

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-06/0270 of 2024/05/07

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

Simpson Strong-Tie Joist Hangers See type numbers in section II.1 of the ETA

Product family to which the above construction product belongs:

Three-dimensional nailing plate (Joist hanger for wood to wood connections and wood to concrete or steel connections)

Manufacturer:

SIMPSON STRONG-TIE Int. Ltd For local branch refer to <u>www.strongtie.eu</u>

Manufacturing plant:

SIMPSON STRONG-TIE Manufacturing facilities

This European Technical Assessment contains:

229 pages including 4 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of: EAD 130186-00-0603 for Three-dimensional nailing plates

This version replaces:

The ETA with the same number issued on 2023-01-06

II	SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT	6
1 Te	chnical description of product and intended use	6
2 Sp	ecification of the intended use in accordance with the applicable EAD	7
3 Ch	aracteristics of product and assessment	8
	sessment and verification of constancy of performance (hereinafter AVCP) system applied, with refer s legal base	ence 12
5 Te EAD	chnical details necessary for the implementation of the AVCP system, as provided for in the applicabl	le 12
ANI	NEX A REVISION HISTORY	13
ANI	NEX B TYPICAL INSTALLATIONS	17
B1 J	oist hangers on timber	17
B2 J	oist hanger on rigid support	17
B3 N	lail Pattern	18
B4 C	conditions for using I-beam headers	20
B5 C	conditions for using I-beam joists	21
B6 D	JH typical installation	22
INA	NEX C BASIS OF DESIGN	23
C0 S	ymbols used in the ETA-06/0270	23
C1 D	Definition of Force Directions and Eccentricity	25
C2 C	characteristic Capacity Modification Methods	26
C3 F	astener Specification	27
C4 D	esign Formula where appropriate	29
C4.1	Joist hangers on timber	32
C4.2	Joist hangers on Rigid support	38
C4.3	Load combination	46
C4.4	Straps hanger on timber	46
C4.5	Straps hangers on rigid support	49
ANI	NEX D PRODUCT DEFINITION AND CAPACITIES	51
D1	AG703 Straps hanger	52
D2	AG713 Straps hanger	54

	Page 3 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07					
D3	BSD Joist hanger	56				
D4	BSDI Joist hanger	60				
D5	BSIN Joist hanger	62				
D6	BSIL Joist hanger					
D7	BSNN Joist hanger					
D8	BSS Joist hanger	75				
D9	DJH Joist hanger	79				
D10	ETC Truss connector	81				
D11	ETC392 Truss Connector	85				
D12	ETC G/D Truss Connector	92				
D13	GBE Joist hanger	95				
D14	GBI Joist hanger	97				
D15	15 GLE Joist hanger					
D16	16 GLE-AL Joist hanger					
D16	16 GLI Joist hanger					
D17	GLI-AL Joist hanger	130				
D18	GSE Joist hanger	132				
D19	GSE-AL Joist hanger	151				
D20	GSEXL Joist hanger	158				
D21	GSI Joist hanger	159				
D22	GSI-AL Joist hanger	161				
D23	HGUQ Joist hanger	163				
D24	HGUS Joist hanger	164				
D25	JHA270 Straps hanger	166				
D26	JHA450 Straps hanger	168				
D27	27 JHR/L Joist hanger					
D28	28 MF Joist hanger					
D29	9 SAE Joist hanger					
D30	SAE250/38/1,5 Joist hanger	179				
D31	SAE590, SAE620 and SAE690 Joist hanger	181				
D32	SAEL Joist hanger	184				

Page 4 of 229 of European Technical Assessment no. ETA-06/0270, issued on 202	24-05-07	
At leigh benney		

D33	SAI Joist hanger	191		
D34	SAI590, SAI620 Joist hanger	196		
D35	S SAIL Joist hanger			
D36	SAEX Joist hanger	203		
D37	SAIX Joist hanger	205		
D38	SAMI38 Joist hanger	210		
D39	SAMI/4X Joist hanger	211		
D40 SBE Joist hanger		212		
D41	041 SBE45/168/TF Joist hanger			
D42	042 SBG/SLE Joist hanger			
D43	SDED/G and BNS2P Joist hanger	224		
D44	SHT Strap hanger	225		
D45	15 THA Straps hanger			
D46	THAI Straps hanger	228		

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

This ETA covers the following joist hangers types: AG703, AG713, BSD, BSDI, BSNN, BSIL, BSIN, BSS, DJH, ETC, ETC G/D, GBE, GBI, GLE, GLE-AL, GLI, GLI-AL, GSE, GSE-AL, GSEXL, GSI, GSI-AL, HGUQ, HGUS, JHA270, JHA450, JHR/L, MF, SAE, SAE250/38/1.5, SAE590, SAE620, SAE690, SAEL, SAI, SAI590, SAI620, SAIL, SAEX, SAIX, SAMI/4X, SBE, SBE45/168/TF, SBG/SLE, SDED/G, BSN2P, SHT, THA, THAI.

Simpson Strong-Tie joist hangers type BSD, BSNN, BSIN, BSS, DJH, ETC, GBE, GBI, GLE, GLE-AL, GSE, GSE-AL, HGUQ, HGUS, MF, SAE, SAE590, SAE620, SAE690, SAEL, SAEX, SBE and SBG/SLE are one-piece non-welded, face-fixed external flanges joist hangers to be used in timber-to-timber connections as well as connections between a timber joist and a concrete structure or a steel member.

Simpson Strong-Tie joist hangers type GSEXL and SAMI/4X are one-piece non-welded, face-fixed external flanges joist hangers to be used in connections between a timber joist and a concrete structure or a steel member.

Simpson Strong-Tie joist hangers type BSI, BSDI, SAI, SAIL, SAIX, GSI, GSI-AL, GLI, GLI-AL and BSIL are one-piece non-welded, face-fixed, internal flanges joist hangers to be used in timber-to-timber connections.

Simpson Strong-Tie joist hangers type JHR, JHL, ETCG and ETCD are one-piece non-welded, face-fixed, both external and internal flanges joist hangers to be used in timber-to-timber connections.

Simpson Strong-Tie joist hangers type BSN2P, SDED and SDEG are two-pieces non-welded, face-fixed external flanges joist hanger to be used in timber to timber connections as well as connection between a timber and a concrete structure or a steel member.

Simpson Strong-Tie AG703, AG713, JHA, SHT, THA and THAI, joist hangers are one-piece, non-welded, face-fixed or wrapped-over timber-to-

timber joist hangers. They are connected to a header to support a timber joist with a range of nails.

The materials for headers and joists can be of solid timber, glued laminated timber or engineered timber products such as LVL or I-joist (fitted with backer blocks if used for the header).

The joist hangers are made from pre-galvanized steel grade S250GD + Z (min Z275) according to EN 10346 or pre-galvanized steel with a minimum characteristic 0.2% yield stress of 250 MPa, a minimum ultimate tensile strength of 330 MPa and a minimum elongation of 19%, with tolerances according to EN 10143 except if another material is specified (named "Steel ref 1" in the rest of the document). Material, dimensions and nails positions are detailed in Annex D and typical installations are detailed in Annex B. By default all the products are made out of this material except when specified.

All joist hangers can also be produced from stainless steel number 1.4401, 1.4404, 1.4521, 1.4301 or 1.4509 according to EN 10088-2 or a stainless steel with a minimum characteristic 0.2% yield stress of 240 MPa, a minimum 1.0% yield stress of 270 MPa and a minimum ultimate tensile strength of 530 MPa (named "Steel ref 2" in the rest of the document). If no name is clearly specified, product variant made with stainless steel have generally the same name with a S (as Stainless) at the end.

Some joist hangers may be produced from steel grade S235JR according to EN 10025-2 (named "Steel ref 3" in the rest of the document). In this case, an additional coating must be added such as hot dip galvanizing or painting. Some additional coatings allow to reach service class 3.

Some joist hangers may be produced from pregalvanized steel grade S250GD + Z800 or ZM310 or similar coatings according to EN 0346 (named "Steel ref 4" in the rest of the document), that has been tested to ISO 11997-1 Cyclic Corrosion Testing in artificial atmosphere.

Regardless of the steel, a colored finish paint can be applied to the joist hangers.

2 Specification of the intended use in accordance with the applicable EAD

The joist hangers are intended for use in making end-grain to side-grain connections in load bearing timber structures, as a connection between a wood based joist and a solid timber or wood based header, where requirements for mechanical resistance and stability and safety in use in the sense of the Basic Works Requirements 1 and 4 of Regulation (EU) 305/2011 shall be fulfilled. They are also intended for use in making an end-grain connection between a timber joist and a concrete structure or a steel member.

The joist hangers can be installed as connections between wood based members such as:

- Structural solid timber classified to C14-C40 according to EN 338 / EN 14081,
- Glulam classified to GL24-GL36 according to EN 1194 / EN 14080,
- LVL according to EN 14374,
- Parallam PSL.
- Intrallam LSL.
- Duo- and Triobalken,
- · Layered wood plates,
- Kreuzbalken with minimum thickness of 80 mm
- I-beams with backer blocks on both sides of the web in the header and web stiffeners in the joist
- Plywood according to EN 636
- Cross Laminated timber according to EN 16351

However, the calculation methods are only allowed for a characteristic wood density of up to 460 kg/m³. Even though the wood based material may have a larger density, this must not be used in the formulas for the load-carrying capacities of the fasteners.

When used on CLT only CSA screws shall be used with the connectors. The edge distance and spacing of each CSA screw must be checked according to the specifications given by the manufacturer of the timber. If nothing is specified, edge distance and spacing must be in accordance to the outer layer of the CLT panels.

Annex C defines the directions of forces and also states the formulas for the characteristic load-carrying capacities of the joist hanger connections. The design of the connections shall be in accordance with Eurocode 5 or a similar national Timber Code.

The joist hangers are intended for use for connections subject to static or quasi static loading.

The scope of the hangers regarding resistance to corrosion shall be defined according to national provisions that apply at the installation site considering environmental conditions and in conjunction with the admissible service conditions according to EN 1995-1-1 and the admissible corrosivity category as described and defined in EN ISO 12944-2

The provisions made in this European Technical Assessment are based on an assumed intended working life of the post bases brackets of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Characteristics of product and assessment

Characteristic		Assessment of characteristic
3.1	Mechanical resistance and stability (BWR 1)*)	
Joint Strength - Characteristic load-carrying capacity		See Annex D
Joint Stiffness		See Annex D
Joint ductility		No performance assessed
Resistance to seismic actions		No performance assessed
Resistance to corrosion and deterioration		See section 3.6
3.2	Safety in case of fire (BWR 2)	
Reaction to fire		The joist hangers are made from steel classified as Euroclass A1 in accordance with EN 13501-1 and Commission Delegated Regulation 2016/364
Resis	stance to fire	No performance assessed
3.3	General aspects related to the performance of the product	The joist hangers have been assessed as having satisfactory durability and serviceability when used in timber structures using the timber species described in Eurocode 5 and subject to the conditions defined by service class 1 and 2.

^{*)} See additional information in section 3.9 - 3.12.

3.4 Methods of verification Safety principles and partial factors

The characteristic load-carrying capacities are based on the characteristic values of the nail connections and the joist hangers. To obtain design values the capacities have to be divided by different partial factors for the material properties, the nail connection in addition multiplied with the coefficient k_{mod} .

According to EN 1990 (Eurocode – Basis of design) paragraph 6.3.5 the design value of load-carrying capacity may be determined by reducing the characteristic values of the load-carrying capacity with different partial factors.

Thus, the characteristic values of the load–carrying capacity are determined also for timber failure $F_{Rk,H}$ (obtaining the embedment strength of nails subjected to shear or the withdrawal capacity of the most loaded nail, respectively) as well as for steel plate failure $F_{Rk,S}$. The design value of the load–carrying capacity is the smaller value of both load–carrying capacities.

$$F_{Rd} = min \left\{ \frac{k_{mod} \cdot F_{Rk,H}}{\gamma_{M,H}}; \frac{F_{Rk,S}}{\gamma_{M,S}} \right\}$$

Therefore, for timber failure the load duration class and the service class are included. The different partial factors γ_M for steel or timber, respectively, are also correctly taken into account.

3.5 Mechanical resistance and stability

See <u>Annex C</u> for characteristic load-carrying capacities of the joist hangers.

The characteristic capacities of the joist hangers are determined by calculation assisted by testing or only testing as described in the EOTA Guideline 015 clause 5.1.2. They should be used for designs in accordance with Eurocode 5 or a similar national Timber Code.

The design models allow the use of fasteners described in the table in Annex C3:

The characteristic load-carrying capacities of the products shall be calculated in accordance with the manufacturer's design code, extracts of which are given in Annex C4. The design code has been derived in accordance with ETAG 015 and Eurocode 5 (2008).

The calculated values should be used for designs in accordance with Eurocode 5 or a similar national Timber Code. These values are based on the assumption that there is a maximum gap of 3 mm

between the timber members, the members are laterally restrained and wane is not present in the timber at the joint.

The hangers shall be used with the fasteners specified in Annex C3.

Furthermore, the Face mount hangers types BSD, BSNN, BSIL, BSIN, BSS, DJH, JHR/L, SAE, SAEL, SAEX, SAIX, SDED/G, GSE, GSE-AL, GSEXL, MF, SAMI/4X, GLE, GLE-AL, ETC, GBE, SBE, SBG and SLE can be fastened to a concrete structure or steel member with 8 to 12 mm diameter bolts in holes with a diameter up to 2 mm larger than the bolt.

No performance has been determined in relation to the joint's stiffness properties - to be used for the analysis of the serviceability limit state.

No performance has been determined in relation to ductility of a joint under cyclic testing. The contribution to the performance of structures in seismic zones, therefore, has not been assessed.

3.6 Aspects related to the performance of the product

3.6.1 Corrosion protection in service class 1 and 2. In accordance with ETAG 015, joist hangers have a zinc coating weight of min Z275. Steel employed is S250GD with min Z275 according to EN 10346:2009.

3.6.2 Corrosion protection in service class 3.

In accordance with Eurocode 5, joist hangers are made from stainless steel number 1.4401, 1.4404, 1.4521, 1.4301 or 1.4509 according to EN 10088-2 or a stainless steel with a minimum characteristic 0.2% yield stress of 240 MPa, a minimum 1.0% yield stress of 270 MPa and a minimum ultimate tensile strength of 530 MPa. The nails or screws shall be produced from stainless steel.

Joist hangers coated with hot dip galvanisation, or made of S250GD steel with zinc coating ZM310 according to EN 10346:2009, can also be used in service class 3 according to Eurocode 5.

3.7 General aspects related to the use of the product

Simpson Strong-Tie joist hangers types AG703, AG713, BSD, BSDI, BSNN, BSIL, BSIN, BSS, DJH, ETC, ETC G/D, GBE, GBI, GLE, GLE-AL, GLI, GLI-AL, GSE, GSE-AL, GSEXL, GSI, GSI-AL, HGUQ, HGUS, JHA270, JHA450, JHR/L, MF,

SAE, SAE250/38/1.5, SAE590, SAE620, SAE690, SAEL, SAI, SAI590, SAI620, SAIL, SAEX, SAIX, SAMI/4X, SBE, SBE45/168/TF, SBG/SLE, BSN2P, SDED/G. SHT, THA. THAI manufactured in accordance with the provisions of this European Technical Assessment using the manufacturing processes as identified in the inspection of the plant by the notified inspection body and laid down in the technical documentation.

Joist hanger connections

Joist hangers shall be installed on the basis of a specific structural design for each installation, using the load-bearing capacities derived from the formulas and specific factors k_{H1} and k_{H2} given in Annex D, applying the appropriate k_{mod} factor depending on the relevant service class / duration of load and the appropriate National partial safety factor for materials.

The fixing of Joist hangers to the support shall use the appropriate nails or screws or bolts in case of solid wood or wood-based support, appropriate CE marked metal anchors for use in concrete in case of concrete support. The load bearing capacities which can be derived from Annex C are given provided that the fixing device has been appropriately designed and installed.

Joist hangers shall be installed by appropriately qualified personnel, following an installation plan and relevant construction details worked out for each individual building project. The installation plan shall be based on the manufacturers general guide and provisions for installing SIMPSON Strong-Tie connections.

A joist hanger connection is deemed fit for its intended use provided:

Header – support conditions

The header shall be restrained against rotation and be free from wane under the joist hanger.

If the header carries joists only on one side the eccentricity moment from the joists M_{ec} = R_{joist} (b_{header}/2+e_{nail}) shall be considered at the strength verification of the header.

Reaction force from the joists R_{ioist}

Width of header **b**header

Distance from nails in the joist to **e**nail

the of the header

For a header with joists from both sides but with different reaction forces a similar consideration applies.

Wood to wood connections

- Joist hangers can be fastened to wood-based members by nails or screws.
- There shall be nails or screws in all holes or a partial nailing pattern as prescribed in Annex B can be used.
- The characteristic capacity of the joist hanger connection is calculated according to the manufacturer's technical documentation.
- The joist hanger connection is designed in accordance with Eurocode 5 or an appropriate national code.
- The gap between the end of the joist and the surface, where contact stresses can occur during loading shall be limited. This means that for joist hangers with outward flaps shall the gap between the surface of the end of the joist and that of the header be maximum 3 mm. Joist hangers with inward flaps shall the gap between the surface of the nail heads in the inward flaps and the end of the joist be maximum 8 mm.
- For joist hanger BSD, BSDI and SBG the width of the joist shall be at least lpen+2.9d, where lpen is the length of the nails and d is the diameter of the nails in the joist, for full nailing and partial nailing without staggering the nails in the joist. For partial nailing with staggered nails in the joist the width shall be at least the penetration length of the nails. For joist hanger with staggered nails in the joist, the width of the joist shall be at least the penetration length of the
- The cross section of the joist at the joist hanger connection shall have sharp edges at the lower side against the bottom plate, i.e. it shall be without wane.
- The cross section of the header shall have a plane surface against the whole joist hanger.
- The width B_J of the joist shall correspond to that of the joist hanger. B_J shall not be smaller than A-3 mm, where A is the inner width of the joist hanger.
- The depth of the joist shall be so large that the top of the joist is at least 20 mm above the upper nail in the joist.
- Joist hangers made from stainless steel should only be fastened with fasteners made from suitable stainless steel. Zinc-coated joist

hangers shall not be fastened with fasteners of stainless steel.

 Nails or screws to be used shall have a diameter, which fits the holes of the joist hangers. Round nails shall have a diameter which is not smaller than the diameter of the hole minus 1 mm. Nails with square cross section shall have a side length not smaller than the hole diameter minus 1,25 mm.

Straps hangers shall be installed to meet the following requirements:

- The hanger is connected to header using the specified nails in <u>Annex C3</u>. The hanger side and back flanges may have a slight splay from nesting within the packing. It is essential to hold the hanger square to the header before nailing.
- Where it is necessary to wrap the straps over the header, a minimum wrap over of 45 mm is required for the JHA and THA and 65 mm for the THAI, AG703 and AG713 to achieve the minimum nailing specification.
 - delivery by the suppliers. For steel, the upper bolts shall have washer Ø18 mm minimum.
- Header is restrained against rotation before application of full loading.

Wood to concrete or steel

The above mentioned rules for wood-to-wood connections are applicable also for the connections between the joist and the joist hanger.

- The joist hanger shall be in close contact with the concrete or steel over the whole face. There shall be no intermediate layers in between.
- The gap between the end of the joist and the surface, where contact stresses can occur during loading shall be limited. This means that the gap between the surface of the end of the joist and that of the concrete or steel shall be maximum 3 mm.
- The bolt shall have a diameter not less than the hole diameter minus 2 mm.
- The bolts shall be placed symmetrically about the vertical symmetry line. There shall always be bolts in the 2 upper holes.
- For concrete, the bolts shall use washers recommended with the mechanical anchor

- For I-joist headers backer blocks of softwood, OSB or plywood shall be installed (see Annex B).
- The size, material and installation details of the backer blocks shall be in accordance to the joist manufacturer's specifications.
- The joist is installed in the hanger ensuring it is free from wane and, for external flanges hangers, the gap between the end of joist and header does not exceed 3 mm.
- The specified joist nails are installed. For instances where double shear nailing is specified, ensure that the correct nail is installed into the joist at an angle of 45°. For the THAI, the specified nail is to be driven downwards at an angle of 45°, into the joist.
- When the supported member is an I-joist it will be necessary to install web stiffeners to the end of the joist if the top flange is not laterally restrained by the hanger side flanges. Refer to joist manufacturer's literature for details of web stiffener installation.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

4.1 AVCP system

According to the decision 97/638/EC of the European Commission1, as amended, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 2+.

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking

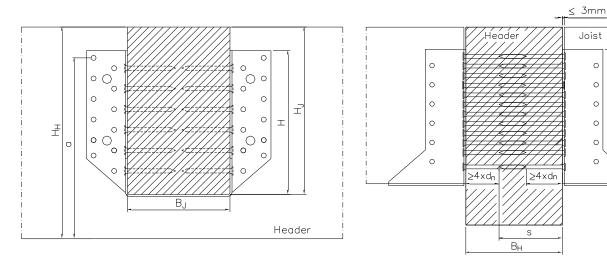
Issued in Copenhagen on 2024-05-07 by

Thomas Bruun
Managing Director, ETA-Danmark

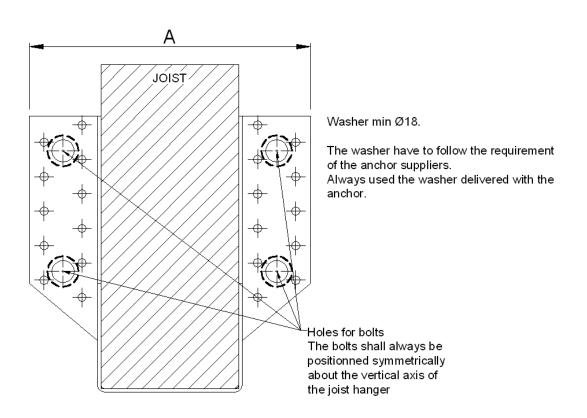
ANNEX A REVISION HISTORY

	Modifications and additions to the previous versions of ETA-06/0270
Issue No.	Update
1.0	First release
	BSD – Modification of the drawing
	BSDI – Modification of the drawing
	SAE590, SAE620-a and SAE620-b have been added
	SDED/G have been added
0.0	SDED/G – New formula for downward direction, upward direction and lateral direction
2.0	SBE and SBG – Axial force has been added
	SBE – The model of calculation for the SBG is used.
	Square washer 30x30x3 has been deleted and replaced by standard washer Ø18 mm
	Al and A joist hanger have been deleted
	New model of calculation for concrete application (excepted for SBE and SBG)
	Modification of the text about material
	BSD/I – Insertion of new blank model in the first two tables
	BSD/I – Modification of the drawing
	SBG – Modification of the minimum width of SBG in both tables
	BSD/I – Modification of the four tables
3.0	SBG – Correction of the value of k _{H,2} and insertion of a line for 38 mm (full nailing)
	SBG – Correction of the value of k _{H,2} and insertion of a line for 38 mm (partial nailing)
	BSD/I – Modification of the table
	BSD/I – Modification of the table
	Update following names: Standard to BSN, I to BSI
	Merging ETA-06/0270 with ETA-07/0150 and ETA-07/0043
	Add SLE variant of SBG
4.0	Correction of the SBG drawing
4.0	Correction of some inversion of letter in the ETA
	Addition of stainless steel types
	Add SAMI/4X
	Add fire resistance for GSE/4 and GLE/4
	Add new values for SAE with square twist nails
5.0	Add HGUQ
0.0	Other updates
	Standard correctionBNS2P
	- BSD drawing
	- BSN and BSI 440 blank model
	Add GBE - GBI
	Add TFU
	Add SHT
	Values on concrete for SAE250/38/1.5
6.0	Update of dimension of SAMI/4X
	CSA5.0x80 for fire performance
	Update of ETC502 and ETC485R (download + uplift)
	Redesign of Product Annex

Modifications and additions to the previous versions of ETA-06/0270			
Issue No.	Update		
	Add ZM310 for service class 3		
	Add SSH/SSF screws nail pattern indications, specifications and capacities. Add also tables with SSH/SSF screws for BSNN, GLE, GSE, GSE-AL, SAE, SAEL and SBE joist hangers.		
	Remove ARS 4,0x50 values table		
	Indicate that the 3 rd part of Eq.6 [7A √] is in N		
	Add BSNN to the header and below Eq.17		
	Add "n _{H,eff} is the number of nails in the first row close to the bending line" below Eq.17		
	Add "n _h the number of bolts on each flange on the header" below Eq.33		
	Add "when connected to timber, z _{max} is reduced by 20 mm" below Eq.43		
	Add " $F_{anchor,Rk}$ is the resistance of the anchors group / bolts group in case of timber to timber connection" below Eq.46		
	Add "anchors/bolts" and for timber to timber connections via bolts, the centre of rotation is 20 mm above the bottom plate for Eq.53		
	BSIN – Add BSIN100/100 modified version and associated data		
	BSN – Correct heights: for blank 280 mm, height B of 90 mm instead of 140 mm		
	BSNN – Add blanks 300, 340 and 380 mm new version and associated data		
7.0	ETC – Correct number of header nails in the table of F_k capacities: for ETC502 (a), 25 mm instead of 15 mm and for ETC502 (c), 15 instead of 25 mm		
	ETC – Add ETC392		
	GBE – Update GBE parameters		
	GLE / GLI – Add new blanks and dimensions		
	Add GLE-AL and GLI-AL joist hangers		
	GSE – Correct holes joist quantity of GSE900/2,5X and GSE900/4X from 38 to 36		
	GSI – Update dimension A _{max} of GSI from 140 to 136 and dimension A _{min} of GSI-AL from 135 to 137		
	SAE, SAEL, SAI and SAIL – Add a mention to partial nailing of posts		
	SAEL – Correct SAEL width in dimensions table		
	SAI – Correct width of SAI620-a and SAI620-b, respectively from 90 to 100 and from 101 to 200 mm		
	SAIX – Add alternative name SAEX for external flanges joist hangers		
	SAIX - Add ZM310 to SAEX and SAIX		
	Add SJH joist hanger		
	THAI – Add THAI1200 straps hanger		
	Add fire resistance for GSE/4 on concrete		

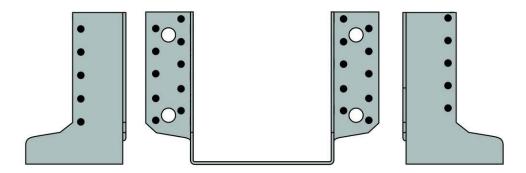

Modifications and additions to the previous versions of ETA-06/0270			
Issue No.	Update		
	HGUQ – Correct screw type in header to SDS25312 (6,35x89 mm)		
	GLE and GLI families fire resistance values – Update link to refer to GSE 4 mm.		
	GSE and GLE fire resistance table – Add GSE and GLE name		
	GSE section fire – Add R _{4,fi,30}		
	SAMI38/2.5 – Add SAMI38/2.5		
	Tables for full nailing – Add note : "For BSDI B<60 mm, only partial nailing possible"		
	Part II, Section 1 – Add "The connectors can be applied with a coloured top paint"		
	GSE/GSI – Add capacities of GSE/I 4 mm with SSH		
	GSE – Correct GSE900AL 2.5 with SSH R _{1,k} R _{2,K} capacities		
	Add a sentence that says that for all joist hangers, partial nailing capacities are also valid for joists on post as soon as the specific nailing pattern shown on ETA page 17 is fullfilled.		
	SDED/G – Correct the number of holes in joist of SDED/G 440 into "8 + 7"		
	SLE – Add capacities for SLE+SSH as it is already with BSNN in the ETA		
8.0	Delete SQT nails and SSH screws values		
	ETC502 – Add ETC502 capacities with SSH12.0x60		
	Add for n_ef.b also BSNN		
	Precise Eq 20. and modify Eq 50.		
	Add R _{bear,k} to Eq 40. and Eq 41.		
	BSDI – Change the limits for SYM nail pattern to 60 mm instead of 70 mm		
	AG703 – Update the thickness from 1.2 mm to 1.5 mm		
	BSNN/SLE – Add performances with SSH10,0x40 screws		
	Modify Eq 61.		
	DJH – Add DJH, new secable joist hanger		
	Add GSE/GLE 4 mm hangers values under fire condition with SSH screws		
	Add GSE/GLE 4 mm 90 mm wide values under fire condition		
	Correct various typing errors		
	SBE320 – Correct number of SSH (4 instead of 2)		
	GSE380 - Correct number of SSH (4 instead of 2)		
	GSE/GLE 4mm – Creation of two separated tables for C24 and GL24h timber in fire condition		
	Eq 40 – add BSNN for n _{ef,b}		
	Eq 45 + page 24 - change dhole to dbolt		
	Page 25 – add BSNN to the sentence about R _{bolt,lat,k} with SBE, SBG and SLE		
9.0	Add SAEX naming to SAIX		
0.0	SAEX/SAIX – Change big hole diameter to 11mm for SSH A4		
	DJH characteristic values on concrete		
	In equations table, update equations numbers		
	Add tables of SSH with pre drilling + New SSH length		
	Update mechanical anchorages		
	R4,k,fi tension resistance in fire for GS GL with CSA and SSH		
	Suppress obsolete products (BSN/BSI, GSE/2.5, SJH, LUP, MH)		

Modifications and additions to the previous versions of ETA-07/0150			
Issue No.	Updates		
1.0	First release		
	GSE780/120 - New loads on concrete		
	HGUS from UK - k _{H1} and k _{H2}		
	Calibration factors for GSE and GSI on wood/wood		
	GSE/GSI - New model for wood/rigid support application (ID151)		
	kh1 and kh2 are not given for JHL/R. Situation to be clarified. See project F1044		
2.0	Add HGUQ product range		
	Change product type in HGUS table in annex 48 (currently refers to GSE)		
	Change the identity of type IL from blank to width x height (annex 49)		
	Add 4.0 nails for HGUS range		
	Add widths up to 300mm for HGUS48		
	Add axial resistance of GSE/I timber and concrete		
	Change the identity of type IL to BSIL and also from blank to width x height		
	Add HGUQ product range		
	Add widths up to 300mm for HGUS48 and add Spec HGUS		
	Change product type in HGUS table in annex 48 (currently refers to GSE)		
2.0	Add 4.0 nails for HGUS range		
3.0	Calibration factors for GSE and GSI on wood/wood		
	GSE/GSI - New model for wood/rigid support application (ID151)		
	Add axial resistance of GSE/I on timber and concrete		
	Add ranges ETC – ETC G/D – GSEXL – GLE/GLI		
	Update following names: IL to BSIL, S to BSS		

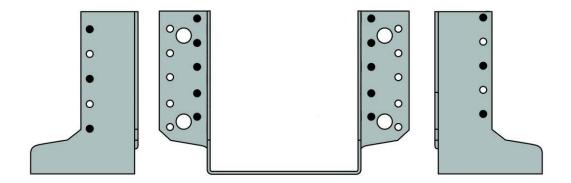

Modifications and additions to the previous versions of ETA-07/0043			
Issue No.			
1.0	1.0 First Release		
	EN 1195-1-1:2004 changed to EN 1995-1-1:2004 + A1:2008		
ı	JHA & THA minimum wrap over changed from 55mm to 45mm		
	Figure 1 updated: Table 1 split into two tables: Material reference's updated		
	Table A3 was table 2. Table updated - model number changed & material reference updated.		
ı	Figure A3 updated.		
	Table A4 was table 3. THAI322 added to table: Material reference updated.		
	Table A5 was table 4.		
0.0	Table A6 was table 5. Table updated - additional installation configurations added for JHA270, JHA450 & THA		
2.0	Formula reference numbers added		
	Formula (2) updated; Formula (3) added; Formula (4) updated		
	Formula (14) updated; Formula (16) added; Formula (18) updated		
	Figure A2.10.1 was Figure A1		
	Definition of symbols table updated - Beff and Leff added		
	Annex 3. Table 3.1 was table 8; Table 3.2 was table 7; Table 3.3 was table 6; Table 3.4 was table 9		
	Annex 4. Table updated - Leff, Beff, CHor & Kef added to table; Bmin* removed from table.		
	Annex 5 added.		
3.0	Add AG703 & AG713		
3.0	Merging ETA-06/0270 with ETA-07/0150 and ETA-07/0043		

ANNEX B TYPICAL INSTALLATIONS

B1 Joist hangers on timber

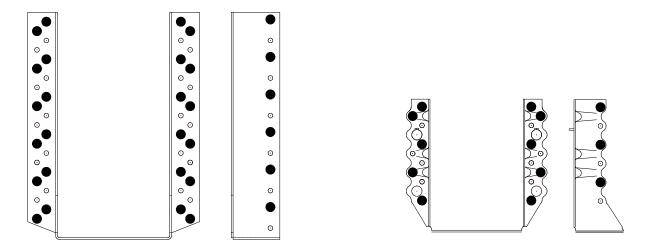


B2 Joist hanger on rigid support

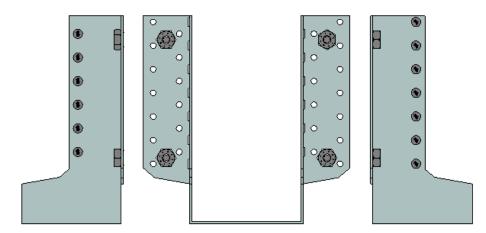

B3 Nail Pattern

Full nail fixing: General application

Fill it in all the holes with nails, on the face and the side flanges.


Partial nail fixing: General application

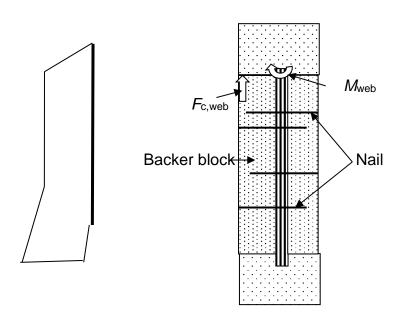
- On the side flanges: Place one nail out of two on each side flange, starting from the first hole on the top of the flange.
- On the face flanges: Place the nails on each face flange, on the vertical line next to the folding.


Partial nailing for connection to column

The distance between the nails in the direction of the fibre shall be at least 20 mm.

For all joist hangers, partial nailing capacities are also valid for joists connected on column as soon as the specific nailing pattern shown above is fullfilled.

Fixing with SSH or SSF connector screws:


- On the side flanges: Fill all holes with Ø4 nails or Ø5 connector screws.
- On the face flanges: Fill with SSH or SSF connector screws in the face flanges all large holes that fulfil the minimum spacing stated in annex C3.

B4 Conditions for using I-beam headers

When an I-beam is used as header beam it is a condition for the load-carrying capacity, that 2 backer blocks are installed, because it prevents a bending failure of the web in the I-beam as explained in the following. Further, the nails, which normally are nailed in the side of the solid header beam, can instead be nailed into the backer blocks. Therefore, the sum of the thicknesses of the backer blocks and the web shall at least be equal to the length of the nails in the header

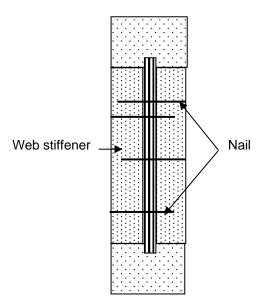
For both reasons it is important that the backer block supports the underside of the top flange of the header I-beam and is sufficiently connected to the web of the head I-beam.

The rope effect results in a tensile force F_t directed toward the edge of the flange. If there are no backer blocks installed, there exists a risk for a bending failure by M_{web} at the neck of the web due to the torsion. With at backer block installed the torsional moment will be taken by a compression force $F_{c,web}$ between the backer block and the underside of the flange and tensile force in the web.

Static model for a vertical force downward. The header beam has been drawn a little away to the right to show the forces acting. The header is shown with the forces and moment acting on it.

The surface of the backer block shall be flush with the side of the flange and shall fit tight to the underside of the flange and shall be nailed with sufficient nails to secure, that the backer blocks and the web functions as one piece of solid timber. It is required that the number of nails in the backer block shall be determined from:

$$n_{nail,backer\,blcok} = 2 \cdot n_{header}$$


Where: n_{header} is the total number of nails from the joist hanger into the header. If the header has a joist hanger on each side, the number of nails shall be doubled.

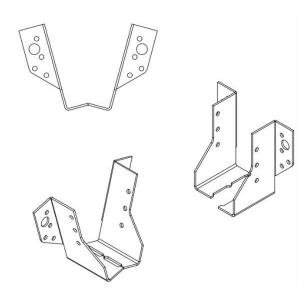
The nails in the backer block shall have a length so their tip will go through the web and at least 20 mm into the opposite backer block.

The I-beam can be prevented from rotation by several means. For example can the wood based panel normally nailed to the top flange and the boards typically nailed to the bottom flange prevent the I-beam from rotating.

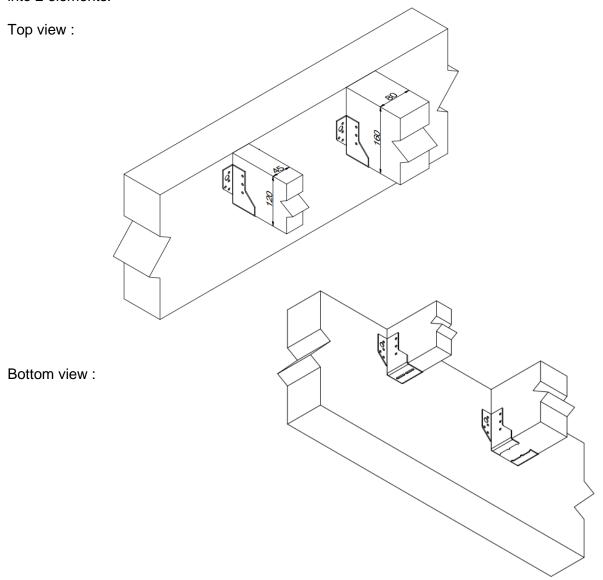
B5 Conditions for using I-beam joists

When an I-beam is used as a joist it is a condition for the load-carrying capacity, that 2 web stiffeners are nailed to the web of the joist, one on each side.

Web stiffeners on the joist at the joist hanger. The web stiffener shall fit to the bottom flange and have a width of 2/3 of the height between the inner sides of the flanges.


The surface of the web stiffeners shall be flush with the side of the flange of the joist and shall fit tight to the lower flange and shall be nailed with sufficient nails to secure, that the web stiffeners and the web functions as one piece of solid timber. So, the number of nails in each web stiffener shall be:

$$n_{nail,web-stif} = n_{joist}$$


Where: n_{joist} is the total number of nails from the joist hanger into the joist.

B6 DJH typical installation

DJH joist hanger is a divisible hanger. It can be used as is on a 45 mm joist and needs to be splitted manually into 2 elements (2 half joist hangers) to be installed on joist wider than 46 mm.

Picture below shows, on the left hand side, a joist hanger installed on a 45 mm width joist (1 element), and on the right hand side, a joist hanger installed on a 80 mm width joist, where the joist hanger has been splitted into 2 elements.

ANNEX C BASIS OF DESIGN

C0 Symbols used in the ETA-06/0270

For the purpose of ETA-06/0270, the following symbols apply.

a_{bolt} Bolt spacing

a-0.5a_c Lever arm of the effective nails (face-fixed hangers)

A Width of the joist hanger (mm)BlankBlank length of the joist hanger

C Hanger seat depth (mm)

C_{eff} Effective Compressed depth (mm)

C_{hor} Horizontal lever armc_i Calibration coefficient

d Divisor taking the inclination of the tilting force into account

*d*_{bolt} Diameter of the hole for bolt

e Eccentricity = distance from the nails in the joist to the surface of the header

e_{center,x} Distance of topmost nails in the joist to the centre of nail group in the joist

e_{J,F} Distance of the lateral force above the centre of gravity of the nails in the joist

e_{J,nail} Distance from the nails in the joist to the surface of the header

For the joist hangers: SBE, BSD, BSDI fastened with threaded nails it has been documented by

tests that this eccentricity term can be disregarded.

e_{H,F} Distance of the lateral force above the centre of gravity of the nails in the header

 $f_{c,90,k}$ Characteristic compression strength perpendicular to the grain of joist or header material (MPa)

 $f_{c,90,k^*}$ Local compressive strength perpendicular to the grain of joist or header material (MPa)

 F_c Load contributions from contact pressure at top corner of header beam

F_{Hanger-Header} Load transfer from the joist hanger to the header beam per flange (N)

 $F_{Joist-Hanger}$ Load transfer from the joist to hanger per flange (N)

 $F_{Lat,nail}$ Lateral force of the nails per flange (N)

F_{hanger, Tension} Tensile capacity of the lower part of the joist hanger per flange (N)

 $f_{\mu,k}$ Tensile strength of hanger steel (MPa)

 $F_{v,RK,header}$ Characteristic lateral load carrying capacity of each of the nails in the header beam (N) $F_{v,Rk,joist}$ Characteristic lateral load-carrying capacity of each of the nails in the joist member (N)

h Height of the joist

H Maximum vertical distance between the nails in header

 h_e Effective height = distance from upper nail to the bottom plate $I_{p,H}$ Polar moment of inertia of the whole nail group in the header Polar moment of inertia of the whole nail group in the joist

 $I_{p,fl}$ Polar moment of inertia around the centre of gravity of the nail group in one header flange

 $k_{c.90}$ Increase factor from EN 1995-1-1 = 2.5

 k_{ef} Rope effect efficiency factor $k_{ef} = 0.8$ if b = 100 mm

for a larger width, k_{ef} is linearly decreasing : $k_{ef} = 1 - 0.002$ *b with with in mm

Page 24 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

*k*_{Jef} reduction factor

 $k_{H,1}$ Form factor $k_{H,2}$ Form factor

I Top flap width (mm)

I_{eff} Effective compressive width of top flap (mm)

n_b Number of bolts - for BSNN, SBG, SLE and SBE joist hangers, use: n_{ef,b}

 $n_{\rm J}$ Total number of nails in both sides of the joist

 $n_{\rm H}$ Total number of nails in the side of the header

 $n_{\rm H,b}$ Number of nails in the header in the first row close to the bending line of the side flange.

*n*_{ef,b} Effective number of bolts

= 2,0 with 2 bolts in the SBG, SBE, SLE and BSNN hanger = 3,2 with 4 bolts in the SBG, SBE, SLE and BSNN hanger

 $n_{J,eff}$ Effective number of nails in the joist $\left[\operatorname{round}\operatorname{down}\left(\frac{n_j}{2}\right)\right]\times 2$

 $n_{H,eff}$ Effective number of nails in the header

 $n_{eff,ax}$ Number of effective nail per flange (face-fixed hangers)

 $n_{h, \text{ side nail}}$ Number of nails in the side of the header beam per flange

 $n_{h, top \ nail}$ Number of nails in the top of the header beam per flange

*n*_{skew nail} Number of skew nails in double shear per flange

 $n_{top\ flange}$ Number of nails in the header beam top into the top flange of an I-beam

 n_{web} Number of nails in the header beam side into the web of an I-beam

R_{ax,k} Characteristic axial load-carrying capacity of the nails in the joist or in the header indicated by the

indices J or H

 $R_{lat,k}$ Characteristic lateral load-carrying capacity of the nails in the joist or in the header indicated by

the indices J or H

R_{bolt,lat,k} Characteristic lateral capacity of the anchor bolt, however, for a thickness till 2,0 mm and an

anchor size of:

M10 maximum 11.0 kN

- M8 maximum 8,8 kN

For larger thicknesses, the capacity shall be the maximum of:

- 11,0 kN / 2,0 mm x thickness for an anchor size of M10 and accordingly
- 8,8 kN / 2,0 mm x thickness for an anchor size of M8

- divergent for type BSNN, SBE, SBG and SLE:

for downward and upward force: $R_{bolt,lat,k} \le 7,1 \text{ kN}$ for lateral force: $R_{bolt,lat,k} \le 12,0 \text{ kN}$

divergent for type SDED/G:

for downward and upward force: R_{bolt,lat,k} ≤ 9,51 kN

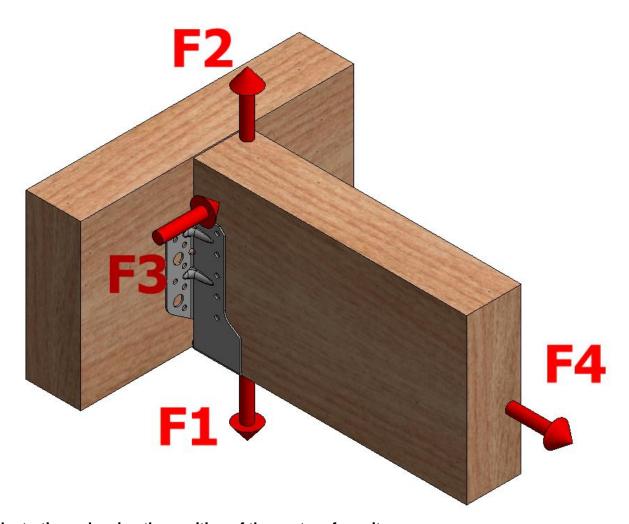
- or the characteristic lateral load-carrying capacity of the anchor bolt in the material to which it is fastened

S Critical width (mm)

t_p Steel plate thickness (mm)

W Maximum horizontal distance between the nails in header

 y_{max} Maximum distance from a nail to the centre of gravity


 z_{max} Distance from upper bolts to bottom plate or by uplift force the distance from the lower bolt to the

top of joist hanger

 ρ_k Characteristic density of header or joist material (kg/m³)

C1 Definition of Force Directions and Eccentricity

It is assumed that the forces acting on the joist hanger connection are the following F_1 , F_2 , F_3 and F_4 , as shown in the figure below. The forces F_1 , F_2 and F_4 shall act in the middle of the joist hanger. The force F_3 is assumed to act $e_{J,F}$ above the centre of gravity of the nails in the joist. It is assumed that the forces are acting right at the end of the joist.

Illustrations showing the position of the centre of gravity:

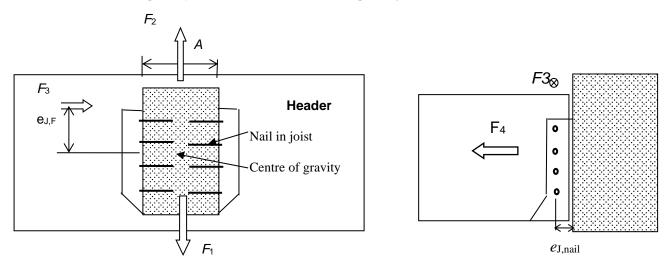
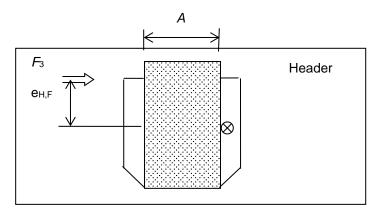



Figure 1: Definition of F₁, F₂, F₃, F₄, e_{j,F} and e_{j,nail}

Figure 2: Lateral force F_3 acts with an eccentricity $e_{H,F}$ in relation to the centre of gravity of the header nails in one flange - marked by \otimes - in the compressed side.

It is assumed that the header is prevented from rotating. Similar it is assumed that the concrete structure or the steel member to which the joist hanger is bolted does not rotate.

If the header beam only has installed a joist hanger on one side the eccentricity moment $M_v = F_d \cdot (A_H/2 + 30 \, mm)$ shall be considered. The same applies when the header has joist hanger connections on both sides, but with vertical forces which differ more than 20%.

C2 Characteristic Capacity Modification Methods

Capacities expressed as numbers (not formulas) e.g. type SAMI and JHR/L are based on a characteristic density of 350 kg/m 3 . For timber or wood based material with a lower density than 350 kg/m 3 the load carrying capacities shall be reduced by the K_{dens} factor:

$$K_{dens} = (\rho_k / 350)^2$$

where ρ_k is the characteristic density of the timber.

C3 Fastener Specification

Fastener types and sizes

NAILS diameter	Length Min – max	Nail type
4.0	35 - 100	Connector nails in accordance with ETA-04/0013
4.2	35 - 60	Connector nails in accordance with ETA-04/0013
3.1	35	Ring shank nails according to EN 14592
4.0	35 - 100	Ring shank nails according to EN 14592
3.75	30 - 32	SST Square twist nails according to EN 14592
3.75	38 - 75	Round smooth nails according to EN 14592
4.0 – 4.5	35 - 100	Round smooth nails according to EN 14592

SCREWS diameter	Length Min – max	Screw type
5.0	35 - 50	Connector screws in accordance with ETA-04/0013
1/4	3 ½	Coach screws according to EN 14592
1/4	2 ½	Coach screws according to EN 14592
10.0	40 - 140	Connector screw SSH/SSF in accordance with ETA-21/0670
12.0	60 - 140	Connector screw SSH/SSF in accordance with ETA-21/0670

BOLTS diameter	Correspondence Holes diameter	Bolts type
8.0		
10.0	Max. 2 mm larger than the bolt diameter	Coo appointment the manufacturer
12.0		See specification of the manufacturer
16.0		

Typical Hanger and Nail Type Combinations

Face Mount Hanger	Туре	Nails diameter	Length Min - Max	Nailing	Bolt possible	
AG703	ARS*	3.1	35	Other		
AG703	ST**	3.75	30	Other	-	
AG713	ARS*	4.0	50	Other	-	
BSD, BSDI, BSIN,	ARS*	4.0	35 - 100			
BSIL, BSNN, BSS,	ARS*	ARS* 4.2 35			BSD, BSIL, BSS,	
JHL/JHR, GSE, GSE- AL, GSI, GSI-AL, GLE,	ST**	3.75	30		JHL/JHR, GSE, GSE-	
GLE-AL, GLI, GLI-AL,	SS***	4.0 - 4.5	35 - 100	Full /	AL, GLE, GLE-AL,	
SAE, SAEL, SAI, SAIL, SAEX, SAIX, SBE, SBG, SLE, SDED/G, BSN2P, DJH	Screw	5.0	35 - 50	Partial	SAE, SAEL, SAEX, SBE, SBG, SLE: M8-M12	
FTC FTCC/D	ARS*	4.0	35 - 100	Othor	MAO	
ETC, ETCG/D	Screw	5.0	35 - 50	Other	M12	
GBE, GBI	Bolts	M16	-	Other	M16	
GDL, GDI	Screws	Ø10	60 - 100	Other	IVITO	
GSEXL	ARS*	4.0	50	Full	M12	
	SS***	3.75	75			
HGUS, Spec HGUS	SS***	4.0	90 - 100	Full	-	
	ARS*	4.0	60			
HGUQ	Screw	1/4 (inch)	3 ½ (inch)	Full		
HOUQ	Screw	1/4 (inch)	2 1/2 (inch)	i uli	-	
JHA270, JHA450, THA,	ST**	3.75	30	Other	-	
THAI	ARS*	4.0	60 – 100	Other	-	
	ARS*	4.0	35 – 100			
MF	ARS*	4.2	35 – 60	Full	M10	
	Screw	5.0	35 – 50			
SAMI	ARS*	4.0	35	Full	M10	
SHT	ARS*	4.0	35	Full	-	

*ARS: Annular Ring Shank nail **ST: Square Twist nail ***SS: Smooth Shank nail

Typical Hanger Combinations with SSH/SSF

		Face flang	es	Side flanges			
Face Mount Hanger	Туре	Diameter	Length Min - Max	Туре	Diameter	Length Min - Max	
GSE,GSE-AL, GLE,	ARS*	4	35-100	SSH/SSF	10	40 - 140	
GLE-AL, GLI, GLI-AL, SAE, SAEL, SBE	Screw	5	35-100	SSH/SSF	12	60 - 140	
BSNN, SLE	ARS*	4	35-100	SSH/SSF	10	50 - 140	
DOININ, OLE	Screw	5	35-100	33H/33F	10	50 - 140	

The general model is given here after. It shall be used with the relevant specific form factors $k_{H,1}$ and $k_{H,2}$ given in Annexe D for each type of face mount hangers .

The hanger and nail type combinations in the table are typical, but other combinations may also be proven suitable, subject to following the design model in Annex C4 of this document.

Capacities of combination with SSH/SSF connector screws are directly given in Annex D for each suitable hanger family.

C4 Design Formula where appropriate

Characteristic capacities of the joist hanger connections with nails or screws only.

F₁ and F₂ are assumed to act in the middle of the joist. The lateral force is assumed to act at an distance e_{J,F} above the centre of gravity of the nails in the joist.

The connection is also allowed for connection to column, where the distance between nails perpendicular to grain is minimum 20mm.

Two nails patterns are specified. See ANNEX B

For joist hanger BSD, SBG and BSDI the width of the joist shall be at least I_{pen} +2.9d for nails and I_{pen} +4d for CSA screws, where I_{pen} is the penetration length of the nails and d is the diameter of the nails in the joist, for full nailing and partial nailing without staggering the nails in the joist. For partial nailing with staggered nails in the joist the width shall be at least the penetration length of the nails.

The following table summarizes the formulas to be used for the calculation of the various face mount hangers characteristic load-carrying capacities covered by the present ETA. Where no value is stated, no capacity is declared by formula. Some capacities are determined by tests only, see $\frac{\text{Annex } D}{\text{Constant}}$.

	Thron	Timber to		m a a t b	Т	Smooth and				
Hanger type	inrea	ded nails, s nails* and		nootn	Timber to rigid support Bolts, anchor bolts				ST3.75x30	
	F ₁	F ₂	F ₃	F ₄	F ₁	F ₂	F ₃	F ₄	F₁	F ₂
<u>AG703</u>	Eq78	Eq95 & Eq96	-	-	-	-	-	-	-	-
<u>AG713</u>	Eq78	Eq95 & Eq96	-	-	-	-	-	-	-	-
<u>BSD</u>	Eq1	Eq5	Eq11 & Eq12	-	Eq40	Eq56	Eq63 & Eq64 & Eq65	-	Eq18	Eq19
<u>BSDI</u>	Eq1	Eq5	Eq11 & Eq12	-	-	-	-	-	Eq18	Eq19
<u>BSNN</u>	Eq1	Eq6	Eq13	Eq17	Eq40	Eq57	Eq63 & Eq64 & Eq65	Eq69	-	-
<u>BSIN</u>	Eq1	Eq5	Eq11 & Eq12	Eq17	-	-	-	-	Eq18	Eq19
<u>BSIL</u>	Eq1	Eq5	Eq11 & Eq12	=	-	-	-	-	Eq18	Eq19
<u>BSS</u>	Eq1	Eq5	Eq11 & Eq12	-	Eq40	-	-	-	Eq18	Eq19
<u>DJH</u>	V	V	V	V	V	V	V	V	-	-
ETC O/P	V	V	-	-	V	-	-	-	-	-
ETC G/D GBE	V Eq24 &	- Eq27 &	- Eq31	Eq35 &	V Eq54 &	Eq61 &	- Eq31	Eq72 &	-	-
<u>GBI</u>	Eq26 Eq24 & Eq26	Eq28 Eq27 & Eq28	Eq31	Eq39 Eq35 & Eq39	Eq55 Eq54 & Eq55	Eq62 Eq61 & Eq62	Eq31	Eq73 Eq72 & Eq73	-	-
GLE, GLE-AL	Eq2	Eq8	Eq11 & Eq12	Eq17	Eq46 ¹⁾	Eq59 & Eq60 ¹⁾	Eq66 & Eq67 & Eq68 ¹⁾	Eq69 & Eq70 ¹⁾	-	-
GLI, GLI-AL	Eq2	Eq8	Eq11 & Eq12	Eq17	-	-	-	-	-	-
<u>GSE</u>	Eq1	Eq5	Eq11 & Eq12	Eq17	Eq42 & Eq46 ¹⁾	Eq56 & Eq59 & Eq60 ¹⁾	Eq66 & Eq67 & Eq68 ¹⁾	Eq70	Eq18	Eq19
GSE-AL	Eq1	Eq5	Eq11 & Eq12	Eq17	Eq42 & Eq46 ¹⁾	Eq56 & Eq59 & Eq60 ¹⁾	Eq66 & Eq67 & Eq68 ¹⁾	Eq70	Eq18	Eq19
<u>GSEXL</u>	=	-	-	-	Eq46 ¹⁾	Eq59 ¹⁾	Eq69 & Eq70 ¹⁾	Eq70		
<u>GSI</u>	Eq1	Eq5	Eq11 & Eq12	Eq17	-	-	-	-	Eq18	Eq19
<u>GSI-AL</u>	Eq1	Eq5	Eq11 & Eq12	Eq17	-	-	-	-	Eq18	Eq19
HGUQ	Eq1	Eq5	Eq11 & Eq12	-	-	-	-	-	-	-
<u>HGUS</u>	Eq3 + v	Eq9	-	-	-	-	-	-	-	-
<u>JHA270</u>	Eq78	Eq95 & Eq96	-	-	-	-	-	-	-	-
<u>JHA450</u>	Eq78	Eq95 & Eq96	-	-	-	-	-	-	-	-
JHR/L	٧	V	-	-	-	-	-	-	-	-
MF	Eq4	Eq10	-	Eq40	-	-	-	-	-	-
SAE	Eq1	Eq5	Eq11 & Eq12	Eq17	Eq40	Eq56	Eq63 & Eq64 & Eq65	Eq69	Eq18	Eq19
SAE250/38/1.5	V	V	V	-	V	V	V	-	-	-
SAE590,620,690	Eq1 + v	Eq5	Eq11 & Eq12	Eq17	Eq40	Eq56	Eq63 & Eq64 & Eq65	Eq69	Eq18	Eq19
<u>SAEL</u>	Eq1	Eq5	Eq11 & Eq12	Eq17	Eq40	Eq56	Eq63 & Eq64 & Eq65	Eq69	Eq18	Eq19
<u>SAI</u>	Eq1	Eq5	Eq11 & Eq12	Eq17	-	-	-	-	Eq18	Eq19
SAI590,620	Eq1 + v	Eq5	Eq11 & Eq12	Eq17	-	-	-	-	Eq18	Eq19

Page 31 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

SAIL	Eq1	Eq5	Eq11 & Eq12	Eq17	-	-	-	-	Eq18	Eq19
SAEX	Eq1	Eq5	Eq11 & Eq12	Eq17	Eq40	Eq56	Eq63 & Eq64 & Eq65	Eq69		
SAIX	Eq1	Eq5	Eq11 & Eq12	Eq17	-	-	-	-	-	-
SAMI/4X	V	-	-	-	-	-	-	-	-	-
<u>SBE</u>	Eq1	Eq6	Eq13	Eq17	Eq40	Eq56	Eq63 & Eq64 & Eq65	Eq69	-	-
SBE45/168/TF	V	V	-	1	-	-	-	ı	=	-
SBG/SLE	Eq1	Eq6	Eq13	Eq17	Eq40	Eq57	Eq63 & Eq64 & Eq65	Eq69	-	-
SDED/G, BNS2P	Eq2	Eq7	Eq16	ı	Eq41	Eq58	-	ı	-	-
<u>SHT</u>	V	V	-	-	=	=	=	=	-	-
<u>THA</u>	Eq78	Eq95 & Eq96	-	-	-	-	-	-	-	-
<u>THAI</u>	Eq78	Eq95 & Eq96	=	ı	Eq101	-	-	ı	-	-

^{*} Smooth nails should be longer than 75 mm

v: Characteristic values given in the product annex ¹⁾: These equations can also be used to calculate values for timber to timber application, with bolts

^{-:} No value

C4.1 Joist hangers on timber

C4.1.1 Threaded nails or connector screws

This clause covers both the use of threaded nails and screws.

C4.1.1.1 F₁ load direction:

• For All Joist Hangers except SDED/G, BSN2P, GLE, GLE-AL, GLI, GLI-AL, HGUS and MF

$$R_{1,k} = \min \left\{ (n_J + 2) \cdot c_1 \cdot R_{lat,J,k}; c_1 \times \frac{1}{\sqrt{\left(\frac{1}{n_H R_{lat,H,k}}\right)^2 + \left(\frac{1}{k_{H,1} R_{ax,H,k}}\right)^2}} \right\}$$
 Eq 1.

For GSE, GSI, GSE-AL and GSI-AL: $c_1 = 0.9$

For others: $c_1 = 1$

• For SDED/G, BSN2P, GLE, GLE-AL, GLI and GLI-AL

$$R_{1,k} = \min \left\{ n_J \cdot R_{lat,J,k}; \frac{1}{\sqrt{\left(\frac{1}{n_H R_{lat,H,k}}\right)^2 + \left(\frac{1}{k_{H,1} R_{ax,H,k}}\right)^2}} \right\}$$
 Eq 2.

• For HGUS

$$R_{1,k} = \min \left[k_{ef} \cdot A \cdot C \cdot k_{c,90} \cdot f_{c,90,k} + n_J \cdot k_{J,ef} \cdot R_{lat,J,k}; \frac{1}{\sqrt{\left(\frac{1}{n_H \cdot R_{lat,H,k}}\right)^2 + \left(\frac{1}{k_{H1} \cdot R_{ax,H,k}}\right)^2}} \right]$$
 Eq 3.

k_{J.ef} are given in the following table:

Nail type and dimension	Reduction factor k _{J,ef}
Round smooth 3,75 x 75	0,6
Round smooth 4,0 x 90	0,6
ETA annular ring shank 4,0 x 60 according to ETA-04/0013	0,4

For MF

$$R_{1,k} = \min \left[4, 2 \cdot R_{lat,J,k}; \frac{1}{\sqrt{\left(\frac{1}{n_H \cdot R_{lat,H,k}}\right)^2 + \left(\frac{1}{k_{H1} \cdot R_{ax,H,k}}\right)^2}} \right]$$
 Eq 4.

C4.1.1.2 F₂ load direction:

• For the most joist hangers excepted for BSNN, SBG, SLE, SBE, SDED/G, BSN2P, GLE/I, GLE/I-AL, HGUS and MF

$$R_{2,k} = \min \left\{ c_2 . n_J \cdot R_{lat,J,k}; c_2 . \frac{1}{\sqrt{\left(\frac{1}{n_H R_{lat,H,k}}\right)^2 + \left(\frac{1}{k_{H,2} R_{ax,H,k}}\right)^2}} \right\}$$
 Eq 5.

For GSE, GSI, GSE-AL and GSI-AL :
$$c_2 = 0.8$$
 For others: $c_2 = 1$

• For BSNN, SBG, SLE and SBE:

$$R_{2,k} = \min \left\{ n_{J} \cdot R_{lat,J,k}; \frac{1}{\sqrt{\left(\frac{1}{n_{H}R_{lat,H,k}}\right)^{2} + \left(\frac{1}{k_{H,2}R_{ax,H,k}}\right)^{2}}}; 7A\sqrt{\frac{h_{e}}{1 - \frac{h_{e}}{h}}} \right\}$$
 Eq 6.

With:
$$7A\sqrt{\frac{he}{1-\frac{he}{h}}}$$
 in N

• For SDED/G, BSN2P

$$R_{2,k} = \min \left\{ n_J \cdot R_{lat,J,k}; \frac{1}{\sqrt{\left(\frac{1}{n_H R_{lat,H,k}}\right)^2 + \left(\frac{1}{k_{H,2} R_{ax,H,k}}\right)^2}}; 14 \times 0,75 \times A \sqrt{\frac{h_e}{1 - \frac{h_e}{h}}} \right\}$$
 Eq 7.

• For GLE/I and GLE/I-AL

$$R_{2,k} = \min \left\{ c_3 \cdot n_J \cdot R_{lat,J,k}; \frac{1}{\sqrt{\left(\frac{1}{n_H R_{lat,H,k}}\right)^2 + \left(\frac{1}{k_{H,2} R_{ax,H,k}}\right)^2}} \right\}$$
 Eq 8.

With: $c_3 = 0.9$

• For HGUS

$$R_{2,k} = \min \left[n_J \cdot k_{J,ef} \cdot R_{lat,J,k}; \frac{1}{\sqrt{\left(\frac{1}{n_H \cdot R_{lat,H,k}}\right)^2 + \left(\frac{1}{k_{H2} \cdot R_{ax,H,k}}\right)^2}} \right]$$
 Eq 9.

Refer to Eq 3. for values of $k_{J,ef}$

$$R_{2,k} = \min \left[2, 2 \cdot R_{lat,J,k}; \frac{1}{\sqrt{\left(\frac{1}{n_H \cdot R_{lat,H,k}}\right)^2 + \left(\frac{1}{k_{H2} \cdot R_{ax,H,k}}\right)^2}} \right]$$
 Eq 10.

C4.1.1.3 F₃ load direction:

• For all joist hangers except BSNN, SBG, SLE, SBE and SDED/G:

The capacity from the nails in the joist

$$R_{3,k} = \frac{n_J \cdot R_{lat,J,k}}{\sqrt{\left(\frac{2\sqrt{e_{J,F}^2 + e_{J,nail}^2}}{A}\right)^2 + \left(\frac{R_{lat,J,k}}{R_{ax,J,k}}\right)^2}}$$
Eq 11.

The capacity from the nails in the header

$$R_{3,k} = \frac{R_{lat,H,k}}{\sqrt{\left(\frac{1}{n_H} + \frac{e_{H,F} \cdot H^*}{2I_{p,H}}\right)^2 + \left(\frac{e_{H,F} \cdot W^*}{2I_{p,H}}\right)^2}}$$
 Eq 12.

The lateral capacity of the joist hanger is the minor of the capacity of the nails in the joist and the nails in the header.

For BSNN, SBG, SLE and SBE:

$$R_{3,k} = \frac{\frac{1}{2}n_{H}R_{lat,H,k}}{1 + \frac{n_{H}e_{H,F}y_{\text{max}}}{2I_{p,fl}}} = k_{lat}R_{lat,H,k}$$
Eq 13.

$$k_{lat} = \frac{n_H}{2 \times \left(1 + \frac{n_H \times e_{H,F} \times y_{\text{max}}}{2 \times I_{n,f}}\right)}$$
 Eq 14.

0

If full nailing of all holes in the header flange is applied a contribution from the nails in the other flange can be added to the value of the above formula. This term is:

$$R_{3,k} = \frac{1}{2}n_J R_{ax,J,k}$$
 Eq 15.

• For SDED/G, BSN2P

The capacity of the SDED/G is given by the formula:

$$R_{3,k} = \frac{1}{2} \times \left(n_H \times R_{lat,H,K} + n_J \times R_{ax,H,K} \right) \times \left(-\frac{22}{9} \times 10^{-3} \times \text{Blank} + 1,636 \right) \times 0,65$$
 Eq 16.

C4.1.1.4 F₄ load direction:

In some cases, a solicitation of the joist can be applied in the F_4 direction. We can estimate the resistant capacity of the joist hanger by R_{ax} .

• For BSNN, BSIN, SAE, SAEX, SAIX, SAI, SBE, SBG, SLE, GSE, GSE-AL, GSI, GSI-AL, GLE, GLE-AL, GLI and GLI-AL

$$R_{4,k} = \min \begin{cases} n_{J,eff} \times R_{lat,J,k} \times c_4 \\ n_{H,eff} \times R_{ax,H} \end{cases}$$
 Eq 17.

For BSNN, BSIN, SAE, SAIX, SAI, SBE, SBG, SLE, GLE and GLI c₄ = 0.85

For others: $c_4 = 1$

 $n_{H.eff}$ the number of nails in the first row close to the bending line

C4.1.2 Square twist nails or smooth round nails

C4.1.2.1 F₁ Load direction:

$$R_{1,k} = \min \left\{ n_{J,ef,1} \cdot R_{lat,J,k}; n_H \cdot R_{lat,H,k} \right\}$$
 Eq 18.

Where the following symbols, which have not been defined Annex CO are:

n_{J.ef.1} the effective number of nails in the side of the joist

C4.1.2.2 F₂ Load direction:

$$R_{2,k} = \min\left\{n_{J,ef,2} \cdot R_{lat,J,k}; n_H \cdot R_{lat,H,k}\right\}$$
 Eq 19.

Where the following symbols, which have not been defined in Annex CO are:

 $n_{\rm J,ef,2}$ the effective number of nails in the side of the joist

C4.1.3 Bolts

C4.1.3.1 F₁ load direction:

• For GBE and GBI (with bolts in sides and flanges)

$$F_{j,k} = F_{c,Rk} + \gamma \times n_j \times F_{b,k,j}$$
 Eq 20.

With:

F_{c.Rk} refer to Eq 50. for definition

γ the eccentricity factor, as given in Annex D

n_i the number of bolts in the joist

F_{b.k.j} the lateral capacity of one bolt of the joist (according to EN 1995-1-1)

$$F_{\text{tot,j.bear.k}} = 2 \times n_j \times \gamma \times F_{\text{bear.j.k}}$$
 Eq 21.

\/\/ith

F_{bear,j,k} the bearing resistance of the steel around the bolt in the joist

 $F_{h,k} = 2 \times k_{b,h} \times n_h \times F_{b,k,h}$ Eq 22.

With:

k_{b.h} the calibration factor

nh the number of bolts in the header

F_{b.k.h} the lateral capacity of one bolt on the header. (according to EN 1995-1-1)

$$F_{\text{tot.h.bear.k}} = 2 \times n_h \times F_{\text{bear.h.k}}$$
 Eq 23.

With:

F_{bear.h.k} the bearing resistance of the steel around the bolt in the header – see Eq 45.

The download capacity is defined as the minimum of this four failure mode:

$$R_{1.k} = \min(F_{j.k}, F_{h.k}, F_{tot.h.bear.k}, F_{tot.j.bear.k})$$
Eq 24.

• For GBE and GBI (with wood screws in sides and bolts in flanges)

$$F_{j.screw.k} = F_{c.90.k} + 2 \times \gamma_s \times n_{s.j} \times F_{screw.k.j}$$
Eq 25.

With:

γ_s the eccentricity factor for screws

n_{s.j} the number of screws in the joist

F_{screw.k.j} the lateral capacity of one screw in the joist (according to EN 1995-1-1)

$$R_{1.k.scr} = min(F_{j.screw.k}, F_{h.k}, F_{tot.h.bear.k}, 2 \times n_{s.j} \times F_{bear.sc.k})$$

$$Eq 26.$$

With:

 $F_{bear.sc.k}$ the bearing resistance of the steel around the screws on the joist For $F_{h.k}$ and $F_{tot.h.bear.k}$ see "For GBE and GBI (with bolts in sides and flanges)"

C4.1.3.2 F₂ load direction:

• For GBE and GBI (with bolts in sides and flanges)

The uplift capacity is defined as the minimum of this four failure mode:

$$R_{2.k} = \min (\gamma \times n_j \times F_{b.k.j}, F_{h.k}, F_{tot.h.bear.k}, F_{tot.j.bear.k})$$
Eq 27.

• For GBE and GBI (with wood screws in sides and bolts in flanges)

$$R_{2.k.scr} = min (2 \times \gamma_s \times n_{s.j} \times F_{screw.k.j}, F_{h.k}, F_{tot.h.bear.k}, 2 \times n_{s.j} \times F_{bear.sc.k})$$
Eq 28.

C4.1.3.3 F3 load direction:

For GBE and GBI (with bolts in sides and flanges)

Capacity of the steel around the load application point:

$$F_{area.A} = 2 \times m_y \times a / e_{JH}$$
 Eq 29.

With:

m_v the moment capacity of the steel

a the distance found by test

eJH the distance between the header and the bolt in the joist

$$F_{\text{area.B}} = 2 \times a \times C \times F_{90}$$
 Eq 30.

With:

C the contact length (=depth of the joist hanger) between the timber and the joist hangers F_{90} the compressive capacity of the timber joist

The lateral capacity is defined as:

$$R_{3.k} = F_{area.A} + F_{area.B}$$
 Eq 31.

For GBE and GBI (with wood screws in sides and bolts in flanges)

Same as bolted connection.

C4.1.3.4 F₄ load direction:

• For GBE and GBI (with bolts in sides and flanges)

 $F_{j,lat,k} = n_j \times F_{b,lat,k,j}$ Eq 32.

With

n_i the number of bolts in the joist

F_{b.lat.k.j} the lateral capacity of the bolt on the joist

 $F_{h.ax.k} = 2 \times n_h \times F_{ax.h.k}$ Eq 33.

With:

 n_h the number of bolts on each flange of the header

Fax.h.k the axial capacity of the bolt on the header

$$F_{k,ax,fl} = 2 \times M_{fl} / (d_{b,fl} - d_{h}/2)$$
 Eq 34.

With:

M_{fl} the moment capacity of the flange of the joist hangers

 $d_{\text{b.fl}}$ the distance between the side of the joist hanger and the bolt in the header d_{h} the diameter of the bolt used on the header

Axial capacity is defined as the minimum of the three previous failure mode

$$R_{4,k} = \min (F_{j,lat,k}, F_{h,ax,k}, F_{k,ax,fl})$$
Eq 35.

• For GBE and GBI (with wood screws in sides and bolts in flanges)

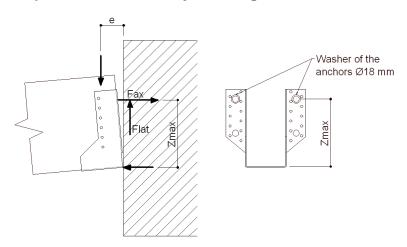
$$F_{j,lat,k} = 2 \times n_{s,j} \times F_{screw,k,j}$$
 Eq 36.

$$F_{h.ax.k} = 2 \times n_h \times F_{ax.h.k}$$
 Eq 37.

$$F_{k,ax,fl} = 2 \times M_{fl} / (d_{b,fl} - d_{b}/2)$$
 Eq 38.

Axial capacity is defined as the minimum of the three previous failure mode

$$R_{4.k} = \min (F_{j.lat.k}, F_{h.ax.k}, F_{k.ax.fl})$$
Eq 39.


C4.2 Joist hangers on Rigid support

C4.2.1 General requirement

For joist hangers connected to a wall of concrete, lightweight concrete or to a steel member the assumptions for the calculation of the load-carrying capacity of the connection are:

- The Transfer of force from the joist to the joist hanger is as for a wood-wood connection.
- The bolts shall always be positioned symmetrically about the vertical axis of the joist hanger.
- For concrete, the bolts shall use washers recommended with the mechanical anchor delivery by the suppliers. Check it is a CE marked product with an ETA.
- For bolted application, washer ≥ Ø18 mm shall be installed under the upper bolt heads or nuts.

C4.2.2 Characteristic capacities of a bolted joist hanger connection

C4.2.2.1 F₁ load direction

For a **F1 load** the formulas for the characteristic load-carrying capacity of the joist hanger connection are:

For all joist hangers except SDED/G, BSN2P, GSE, GSE-AL, GLE and GSEXL

$$R_{1,k} = min[(n_j + 2)xR_{lat,j,k}; n_bxR_{lat,b,k}; R_{bear,k}]$$
Eq 40.

For type BSNN, SBE, SBG and SLE, $n_b = n_{ef.b}$

For SDED/G and BSN2P

$$R_{1,k} = min[n_j x R_{lat,j,k}; n_b x R_{lat,b,k}; R_{bear,k}] \quad \text{for SDED/G}$$
Eq 41.

• For GSE and GSE-AL with a blank model from 300 to 500

$$R_{1,k} = \min \left[c_5 \times (n_j + 2) \times R_{lat,j,k}; R_{bear,k} \right]$$
 Eq 42.

For GSE and GSE-AL with a blank model from 300 to 500, $c_5 = 0.9$

It must be checked that the combination of lateral and axial forces in the anchor bolt can be carried by these forces.

The maximum withdrawal force in a upper bolt can be calculated as follows:

$$F_{ax,bolt} = \frac{F_1 \cdot e}{2 \cdot z_{\text{max}}}$$
 Eq 43.

When connected to timber, z_{max} is reduced by 20 mm.

The upper two bolts are subjected to a combination of lateral and withdrawal forces. The lateral force is determined assuming an even distribution of the downward force F:

$$F_{lat,bolt} = \frac{F_1}{n_{bolt}}$$
 Eq 44.

- This case is for face mount hangers connected to a wall of concrete or to a steel member.
- The bolts shall be positioned symmetrically about the vertical axis of the Face mount hanger.
- The nails in the joists are subjected to a lateral force, which is equally distributed over all nails or screws in the joist.
- The rotation point can be assumed to be positioned at the top of the bottom plate.
- The forces in the bolts are partly lateral forces, partly withdrawal forces.
- The lateral forces are distributed evenly over all bolts.
- The withdrawal forces are assumed to be taken by the 2 upper bolts with washers (30 x 30 x 3)

The bearing resistance between the bolt and the plate of the face mount hanger is given by the following equation :

$$R_{bear,k} = n_{bolt} * f_{u,k} * d_{bolt} * t_p$$

Eq 45.

• For GSEXL, GSE and GSE-AL with blank model from 540 to 1020, GLE and GLE-AL

In order to calculate value of GSE and GSEXL on concrete we compared 4 failure modes and take the most disadvantageous one.

$$F_{1.Rk} = min(F_{v.StT.Rk}, F_{bear.k})$$

Eq 46.

Where:

 $F_{v.StT.Rk}$ is the resistance of the connection joist to joist hanger according to Eq 49.

F_{bear.k} is the resistance of the bearing capacities anchors/bolts to joist hangers flange to header according to Eq 45.

Combination of lateral and axial capacities of the anchor has to be checked with calculation according to Eq 53 and Eq 54.

In case of a connection with bolts to a timber header, lateral and axial bolts capacities have to be checked according to EN1995-1.

To find the design value, k_{mod} and γ_M must be applied on $F_{1,Rk}$ even if the failure is due to a steel failure. Indeed, it will always be on the safe side.

Failure mode: Steel to timber connection

The support reaction of the joist causes lateral loading of the fasteners in the joist connection and compression perpendicular to the grain in the contact area between bottom plate and joist. By taking into account the contribution of the bottom plate and the plastic behaviour of the fasteners, the characteristic steel-to-timber load capacity is:

$$F_{v,S(T,Rk)} = n_J \cdot F_{v,f,Rk} + F_{c,Rk}$$
 Eq 47.

Where:

 $F_{v,f,Rk}$ is the characteristic load-carrying capacity of the fasteners in the joist $F_{c,Rk}$ is the load-carrying capacity of the bottom plate taking into account the compression of the timber perpendicular to the grain and expressed as follows:

$$F_{c.Rk} = C \times x_{my} \times f_{c.90.k} \times 2 \times k_{c.90}$$
Eq 48.

Where:

 x_{my} = min ($x_{my.xx}$, A / 2) C = depth of joist hanger $k_{c.90}$ = 1.75 for GL $k_{c.90}$ = 1.5 for solid wood

For joist hanger with a thickness of 2.5mm : $x_{my.25} = 27$ mm For joist hanger with a thickness of 4.0mm : $x_{my.40} = 43$ mm

For GLE-AL with width > 200 mm, the width considered in the calculation is limited to 200 mm.

Failure mode: Steel plate

Depending on the thickness of the steel plate, the characteristic load capacity $F_{v,sp,Rk}$ of the bolt-to-steel connection is designed according to EN 1993-1-8 (§3 table 3.4) for the 4 mm hanger and EN 1993-1-3 (§8.3 table 8.4) for the 2.5 mm hanger with the following modifications:

The tensile strength $F_{Anet,Rk}$ of the area A_{net} is calculated assuming a contribution of an effective width which is the actual width + 60 mm for each side of the hanger. According to Eurocode 3, the total effective area is then:

$$A_{net,ef} = 2 \cdot (2.e_2 - d_0 + 60) \cdot t_{cor}$$
 Eq 49.

Then, the load bearing capacity of the joist hanger is then:

$$F_{v,Rk} = \min\{F_{v,S;T,Rk}; F_{v,sp,Rk}\}$$
 Eq 50.

This failure mode has been evaluated but is not relevant in all case. It can be disreagarded.

Failure mode: Anchor failure

The last failure mode is the failure of anchors/bolts in shear. For this failure mode, it must be checked that the group of anchors/bolts can resist to the load. To check the group anchor, the ETAG001 Annex C must be used.

The forces in the anchors/bolts will be partly lateral forces, partly withdrawal forces. The lateral forces are distributed equally over all anchors:

$$F_{anchor,lat,Rk} = \frac{F_{v,Ed}}{n_b}$$
 Eq 51.

Where:

 $F_{v,Ed}$ is downward directed force toward the bottom plate

The centre of rotation is assumed at the bottom plate of the joist hanger. For timber to timber connections via bolts, the centre of rotation is 20 mm above the bottom plate.

Withdrawal forces are on the safe side assumed to be taken by the 2 upper anchors with washers. The maximum withdrawal force in an upper anchor can be calculated from:

$$F_{anchor,ax,Rk} = \frac{F_{vEd} \cdot e}{2.z_{max}}$$
 Eq 52.

• For GBE and GBI (with bolts in sides and flanges)

$$F_{h.anch.k} = 2 \times k_{b.h} \times n_h \times F_{lat.anch.d}$$

Eq 53.

With:

F_{lat.anch.d} the lateral capacity of the anchor

$$R_{1.k} = min(F_{j.k}, F_{h.anch.k}, F_{tot.h.bear.k}, F_{tot.j.bear.k})$$
Eq 54.

For the definition of the different value, see see "F1 load direction: For GBE and GBI (with bolts in sides and flanges)"

• For GBE and GBI (with wood screws in sides and bolts in flanges)

$$R_{1.k.sc} = min(F_{j.screw.k}, F_{h.anch.k}, F_{tot.h.bear.k}, 2 \times n_{s.j} \times F_{bear.sc.k})$$
 Eq 55.

C4.2.2.2 F₂ Load direction

For an F₂ Load direction, the formula for the characteristic load-carrying capacity of the joist hanger connection is:

 For all the joist hangers excepted BSNN, SDED/G, BSN2P, SBE, SBG and SLE and GSE (Blank>500), GSE-AL (Blank>500), GLE, GLE-AL and GSEXL

$$R_{2,k} = \min \left[n_j \times R_{lat,j,k}; n_b \times R_{bolt,lat,k} \right]$$
 Eq 56.

For BSNN, SBG, SBE and SLE

The minimum of following formulas (Eq 59 + Eq 60)

If there is no reinforcing for splittering, the following formula is applied:

$$R_{2,k} = 7 \times A_{eff} \times \sqrt{\frac{h_e}{1 - \frac{h_e}{h}}}$$
 Eq 57.

The result of this calculation is in N.

For SDED/G and BSN2P:

$$R_{2,k} = \min \left\{ n_J \cdot R_{lat,J,k}; n_{ef,b} R_{bolt,lat,k} \right\}$$
 Eq 58.

• For GSE (Blank>500), GSE-AL (Blank>500), GLE, GLE-AL and GSEXL

$$R_{2,k} = \min \{ C_6. F_{anchor,Rk}; C_6. n_H. F_{v,f,Rk}; C_6. n_j. F_{v,f,Rk}; F_{Anet,Rk} \}$$
 Eq 59.

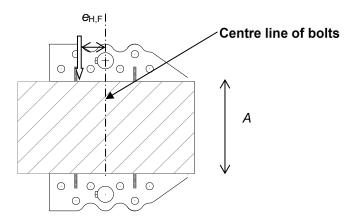
• For connection with 2 bolts for all joist hangers:

$$R_{2,k} = \frac{1}{\sqrt{\left(\frac{1}{n_J}\right)^2 + \left(\frac{\frac{2}{3}e_{J,nail} \times e_{center,x}}{I_{p,nail}}\right)^2}} \times R_{lat,nail,k}$$
 Eq 60.

The force in the anchor bolts are calculated analogous from formula (Eq 27) and (Eq 28).

• For GBE and GBI (with bolts in sides and flanges)

$$R_{2.k} = min(\gamma \times n_j \times F_{b.k.j}, F_{h.anch.k}, F_{tot.h.bear.k}, F_{tot.j.bear.k})$$
Eq 61.


• For GBE and GBI (with wood screws in sides and bolts in flanges)

$$R_{2.k.sc} = min(2 \times \gamma_s \times n_{s.j} \times F_{screw.k.j}, F_{h.anch.k}, F_{tot.h.bear.k}, 2 \times n_{s.j} \times F_{bear.sc.k})$$
Eq 62.

C4.2.2.3 F₃ load direction

Different formulas are used for joist hangers with 2 or 4 anchor bolts into the supporting structure of for example concrete or steel.

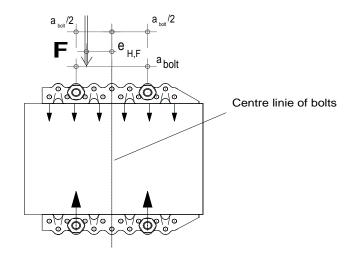
For all Joist hangers with 2 bolts except GSE, GSE-AL, GLE, GLE-AL and GSEXL

The minimum value of the following formulas and also formula [Eq.11] for the characteristic lateral load-carrying capacity of the joist hanger connection applies to a joist hanger with 2 bolts.

For small eccentricities eH.F:

$$R_{3,k} = \frac{\frac{2R_{bolt,lat,k}}{R_{ax,J,k}^2} + \sqrt{\frac{4R_{bolt,lat,k}^2}{R_{ax,J,k}^4} - \left(4\frac{R_{bolt,lat,k}^2}{R_{ax,J,k}^2} - n_J^2\right) \left[\left(\frac{e_{H,F}}{AR_{lat,J,k}}\right)^2 + 1/R_{ax,J,k}^2\right]}{2\left[\left(\frac{e_{H,F}}{AR_{lat,j,k}}\right)^2 + 1/R_{ax,J,k}^2\right]}$$
Eq 63.

For larger eccentricities e_{H,F}:

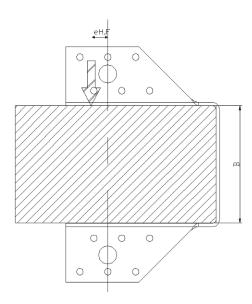

$$R_{3,k} = \frac{\frac{1}{2}An_{J}R_{lat,J,k}}{e_{H.F.}}$$
 Eq 64.

where the symbols previously not defined are:

e_{H,F} is the eccentricity of the lateral force in relation to the centre of the bolts in each flange. It shall be taken as the numerical value of the eccentricity

Rbolt,lat,k See page 24

• For all Joist hangers with 4 bolts except GSE, GSE-AL, GLE, GLE-AL and GSEXL

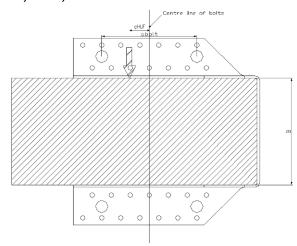


For a lateral force the formula for the characteristic load-carrying capacity of the joist hanger connection with 4 Ø10 mm bolts is:

$$R_{3,k} = \frac{a_{bolt} \times R_{bolt,lat,k}}{e_{H,F} + \frac{1}{2} a_{bolt}} + \frac{1}{2} n_J \times R_{ax,J,k}$$
 Eq 65.

where the symbols are defined in the previous text, also the limitation on the characteristic lateral capacity of a 10 mm bolt.

• For GSE, GSE-AL and GLE, GLE-AL with 2 bolts



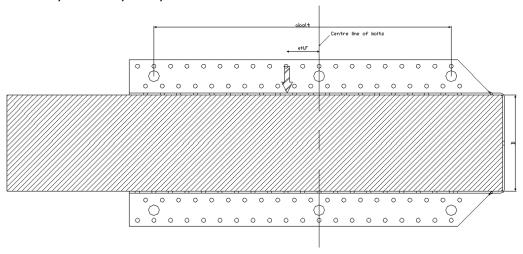
Provided the joist is prevented from rotation around its own axis, i.e. the force is acting right at the anchor bolts with $e_{H,F} = 0$ mm the characteristic lateral load-carrying capacity of the joist hanger connection with 2 Ø12 mm bolts is:

$$R_{3,k} = R_{\text{bolt,lat,k}}$$
 Eq 66.

Where Rbolt, lat, k is the resistance of one anchor in shear

• For GSE, GSE-AL, GLE, GLE-AL and GSEXL with 4 bolts:

Provided the force is acting between the anchors bolts the characteristic lateral load-carrying capacity of the joist hanger connection with 4 Ø12 mm bolts is:


$$R_{3,k} = \frac{a_{bolt}}{e_{H,F} + \frac{1}{2} a_{bolt}} R_{bolt,lat,k}$$
 Eq 67.

Where:

*a*_{bolt} is the distance between the two extreme bolts

e_{H.F} is the distance between application load and the centre line of the bolts

For GSE, GSE-AL, GLE, GLE-AL and GSEXL with 6 and 8 bolts:

Provided the force is acting between the outer anchor bolts and the force is acting $e_{H,F}$ from the middle anchor bolt the characteristic lateral load-carrying capacity of the joist hanger connection with 6 12 mm bolts is:

$$R_{3,k} = \frac{R_{bolt,lat,k}}{\frac{1}{3} + e_{H,F} / a_{bolt}}$$
 (6 bolts) $R_{3,\cdot} = \frac{R_{bolt,lat,k}}{\frac{1}{4} + e_{H,F} / a_{bolt}}$ (8 bolts) Eq 68.

• For GBE and GBI (with bolts in sides and flanges)

Same as "F3 load direction: For GBE and GBI (with bolts in sides and flanges)"

For GBE and GBI (with wood screws in sides and bolts in flanges)

Same as "F3 load direction: For GBE and GBI (with bolts in sides and flanges)"

C4.2.2.4 F₄ load direction

In some cases, a solicitation of the joist can be applied in the F_4 direction. We can estimate the resistant capacity of the joist hanger by R_{ax} .

• For BSNN, SAE, SAEX, SBE, SBG, SLE and GLE (2.5 mm thick)

$$R_{4,k} = \min \begin{cases} n_J \times R_{lat,J,k} \\ 2.5 \times n_b \text{ kN} \end{cases}$$
 Eq 69.

For the type BSNN, SBE and SBG and SLE: $n_i = n_{J,eff}$

• GSE (4 mm thick), GSE-AL (4 mm thick), GLE (4 mm thick), GLE-AL (4 mm thick) and GSEXL

$$R_{4,k} = \min \begin{cases} n_J \times R_{lat,J,k} \\ 6.5 \times n_b \times c_7 \text{ kN} \end{cases}$$
 Eq 70.

 $c_7 = 0.8$

It must be checked that the external diameter of the washer is at least twice the diameter of the anchor or the bolt.

• For GBE and GBI (with bolts in sides and flanges)

$$F_{h.anch.ax.k} = 2 \times n_h \times F_{ax.anch.d}$$
 Eq 71.

With:

F_{ax.anch.d} the axial capacity of the anchor

$$R_{4.k} = \min(F_{j.lat.k}, F_{h.anch.ax.k}, F_{k.ax.fi})$$
 Eq 72.

• For GBE and GBI (with wood screws in sides and bolts in flanges)

$$R_{4.k.sc} = min(2 \times n_{s.j} \times F_{screw.ax.j}, F_{h.anch.ax.k}, F_{k.ax.fl})$$
Eq 73.

C4.3 Load combination

For a combination of forces in the vertical direction and in the lateral direction the following inequalities shall be fulfilled.

C4.3.1 - F₁ load direction and F₃ load direction

$$\left(\frac{F_{1,d}}{R_{1,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2 \le 1,0$$
 Eq 74.

C4.3.2 – F₂ load direction and F₃ load direction

$$\left(\frac{F_{2,d}}{R_{2,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2 \le 1,0$$
 Eq 75.

C4.3.3 – F₁ load direction, F₃ load direction and F₄ load direction

$$\left(\frac{F_{1,d}}{R_{1,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2 + \left(\frac{F_{4,d}}{R_{4,d}}\right)^2 \le 1,0$$
 Eq 76.

C4.3.4 - F₂ load direction, F₃ load direction and F₄ load direction

$$\left(\frac{F_{2,d}}{R_{2,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2 + \left(\frac{F_{4,d}}{R_{4,d}}\right)^2 \le 1,0$$
 Eq 77.

Factors $k_{H,1}$, $k_{H,2}$, $n_{J,ef,1}$ and $n_{J,ef,2}$ will be detailed in Annex D for each reference.

Effective number of nails $n_{\rm J,ef,1}$ and $n_{\rm J,ef,2}$ for joist hangers nailed with smooth round nails or square twist nails

The effective number of nails $n_{\rm J,ef,1}$ and $n_{\rm J,ef,2}$ shall be used for calculation of the load-carrying capacity of a wood-wood connection with smooth round nails or square twist nails subjected to a downward force towards the bottom plate, respectively an upward force away from the bottom plate.

C4.4 Straps hanger on timber

C4.4.1 Basis of Design

The design method detailed below for the JHA, THAI, AG703 and AG713 joist hangers has been validated by calculation assisted by testing method as defined in ETAG 015 and substantiated by BM TRADA Certification as part of the ETA assessment process.

The hanger characteristics needed to apply this method can be found in Annex D.

The designation of symbol is in Annex C0.

C4.4.2 Nail Capacities

The nail capacities are given in Annex C3 and have been validated against hanger test data.

They have had an efficiency factor applied as part of the design method validation and are only for use in conjunction with this ETA and the hangers listed in it.

C4.4.3 Hanger Characteristics

Hanger characteristics are given in Annex C4.

For hanger models not included in <u>Annex C4</u>, but within the scope of the ETA, reference should be made to the ETA holder for further information regarding the hanger characteristics.

C4.4.4 F₁ load direction

The load is transferred from the supported member (joist) to the supporting member (header) by:

- 1) Load transfer from the supported member to the hanger
- 2) Tension in the lower part of the hanger
- 3) Load transfer from the hanger to the supporting member.

Therefore, the capacity of the system is the minimum of the above three mechanisms:

$$\mathbf{R}_{1.k} = \mathbf{Min} \begin{cases} F_{\text{Joist-Hanger}} \\ F_{\text{Hanger,Tension}} \\ F_{\text{Hanger-Header}} \end{cases} \mathbf{Eq 78.}$$

C4.4.5 Load Transfer from Joist to Hanger (FJoist-Hanger)

The force between joist and hanger per flange (F_loist-Hanger) is:

$$F_{Joist-Hanger} = \frac{C_{eff} \times A \times f_{c,90,k^*}}{2}$$
 Eq 79.

Where from Eurocode 5

$$f_{c,90,k^*} = k_{c,90,joist} \times f_{c,90,joist}$$
 (Kc,90,joist = 1.5)

When joists are installed with 75 mm long skewed nails, a contribution from these nails can be added to $F_{\text{Joist-Hanger}}$ to give:

$$F_{Joist-Hanger} = \frac{C_{eff} \times A \times f_{c,90,*}}{2} + \frac{n_{skewnail} \times F_{v,RK,joist}}{3}$$
 Eq 81.

C4.4.6 Characteristic tensile capacity of the lower part of the joist hanger (FHanger, Tension)

The tensile capacity per flange F_{Hanger, Tension} is:

$$F_{Hanger,Tension} = \frac{S \times t_p \times f_{u,k}}{d}$$
 Eq 82.

When joists are installed with 75mm long skewed nails, a contribution from the skewed nails can be added to $F_{Hanger, Tension}$ to give:

$$F_{Hanger,Tension} = \frac{S \times t_p \times f_{u,k}}{d} + \frac{n_{skewnail} \times F_{v,RK,joist}}{3}$$
 Eq 83.

 $F_{\text{Hanger, Tension}}$ shall be reduced by 25% if the joist hanger is installed in an under slung installation.

C4.4.7 Load transfer from the hanger to the header – Face Fix Installation

When face-fixed, the force between header and hanger per flange is:

$$F_{\text{Hanger-Header}} = \text{Min} \begin{Bmatrix} F_{\text{Lat, nail}} \\ F_{\text{Ax, nail}} \end{Bmatrix}$$
 Eq 84.

The vertical load is shared between the total numbers of nails per flange:

$$F_{\text{Lat, nail}} = n_{\text{h, side nail}} \times F_{\text{v, Rk, header}}$$
 Eq 85.

The axial force per flange in the nails is:

$$F_{Ax, nail} = \frac{F_{Ax, Rk, header} \times (a - 0.5a_c) \times n_{eff, ax}}{e}$$
Eq 86.

When joists are installed with 75mm long skewed nails, a contribution from the skewed nails can be added, hence F_{hanger-Header} becomes:

$$F_{Header - Hanger} = Min \begin{cases} F_{Lat, nail} \\ F_{Ax, nail} \end{cases} + \frac{n_{skewnail} \times F_{v, RK, joist}}{3}$$
Eq 87.

Smooth nails (round or square) shall fulfil the following criterion:

$$\left(\frac{F_{\text{Lat,nail}}}{F_{\text{V,Rk,header}}}\right) \le 1 \quad \text{and} \quad \left(\frac{F_{\text{Ax,nail}}}{F_{\text{ax,Rk,header}}}\right) \le 1$$
 Eq 88.

Ring shank nails shall fulfil the following criterion:

$$\left(\frac{F_{\text{Lat,nail}}}{F_{\text{power}}}\right)^2 + \left(\frac{F_{\text{Ax,nail}}}{F_{\text{power}}}\right)^2 \le 1$$
Eq 89.

C4.4.8 Load transfer from the hanger to the header – Wrap over Installation

When wrapped-over, the force between header and hanger per flange is:

$$F_{\text{Hanger-Header}} = k_{\text{ef}} (F_{\text{c}} + F_{\text{r}}) + n_{\text{h.side nail}} \times F_{\text{v.Rk header}}$$
 Eq 90.

Where

$$F_{c} = t_{p} \sqrt{\frac{f_{u,k} \times f_{c,90,k^*} \times l \times l_{eff}}{3}}$$
Eq 91.

$$F_{r} = n_{h,top \ nail} \times F_{v,Rk, header} - \frac{f_{u,k} \times l \times t_{p}^{2}}{6 \times C_{hor}}$$
Eq 92.

From Eurocode 5

$$f_{c,90,*} = k_{c,90,header} \times f_{c,90,header}$$
 (k_{c,90,header} = 1.0) Eq 93.

For instance where 75mm joist nails are used, a contribution from the skewed nails can be added, hence, $F_{hanger-Header}$ becomes:

$$\mathsf{F}_{\mathsf{Hanger-Header}} = \mathsf{k}_{\mathsf{ef}} \left(\mathsf{F}_{\mathsf{c}} + \mathsf{F}_{\mathsf{r}} \right) + \mathsf{n}_{\mathsf{h, side \, nail}} \times \mathsf{F}_{\mathsf{v, RK, \, header}} + \frac{\mathsf{n}_{\mathsf{skewnail}} \times \mathsf{F}_{\mathsf{v, RK, \, joist}}}{3}$$
 Eq 94.

C4.4.9 F₂ load direction

For uplift force, the load is transferred from the joist into the hanger by the nails in the side of the joist.

For skew nails with a length of 75 mm or greater, the load may also be transferred directly from the joist into the header.

For instances where nails with a length of 30 to 38 mm are inserted perpendicular to the joist the uplift capacity is:

$$F_{2.k} = 0.6 \times n_J \times F_{Lat,RK,Joist}$$
 Eq 95.

When nails with a length of 75 mm are inserted skew to the joist the uplift capacity is:

$$F_{2.k} = \frac{n_{skewnail} \times F_{Lat,RK,Joist}}{3}$$
 Eq 96.

Where:

 $F_{Lat,RK,Joist}$ is the characteristic lateral capacity of the nails in the joist

C4.4.10 I-beam as headers

If an I-beam is used as a header, a backer block must be installed between the joist hanger and the web. The backer shall fulfill the following criteria:

- The block shall fit tight to the underside of the top flange (Annex B4)
- The surface of the block shall be flush with the side of the flange
- The nails in the backer block shall be of sufficient length so that they go through the web and clinched.
- It is required that the number of nails in the backer block shall be determined from:

$$n_{nail, bac \, ker} = 2(n_{web} \times 2n_{top \, flange})$$

C4.5 Straps hangers on rigid support

C4.5.1 Basis of Design

The design method detailed below for the THAI1200 joist hangers has been validated by calculation assisted by testing method as defined in ETAG 015.

The hanger characteristics needed to apply this method can be found in Annex D.

The designation of symbol is in Annex C0.

C4.5.2 Nail Capacities

The nail capacities are given in Annex C3 and have been validated against hanger test data.

They have had an efficiency factor applied as part of the design method validation and are only for use in conjunction with this ETA and the hangers listed in it.

C4.5.3 Hanger Characteristics

Hanger characteristics are given in Annex C4.

C4.5.4 F₁ load direction – Face fix installation

The load is transferred from the supported member (joist) to the supporting member (header) by:

- 1) Load transfer from the supported member to the hanger
- 2) Tension in the lower part of the hanger
- 3) Load transfer from the hanger to the supporting member.

Therefore, the capacity of the system is the minimum of the above three mechanisms:

Eq 97.

$$R_{1.k} = Min \left\{ \begin{array}{l} F_{Joist \, - \, Hanger} \\ \\ F_{Hanger, Tension} \\ \\ F_{Hanger-Header} \end{array} \right.$$

With:

F_{jois-hanger} calculated from Eq83.

F_{hanger-Tension} calculated from Eq86.

F_{Hanger-Header} checked by the user by checking that the anchor bolts can carry the combination of axial and lateral forces.

Maximum withdrawal force in a upper bolt can be calculated as follows:

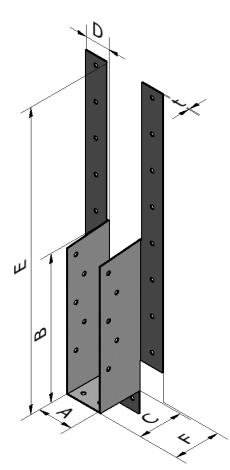
Eq 98.

$$F_{ax.bolt} = \frac{F_1 \times e}{2 \times z_{max}}$$

The upper two bolts are subjected to a combination of lateral and withdrawal forces. Lateral force is determined assuming an even distribution of the downward force F:

Eq 99.

$$F_{lat.bolt} = \frac{F_1}{n_{holt}}$$


ANNEX D PRODUCT DEFINITION AND CAPACITIES

D1 AG703 Straps hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
AG703	Steel ref 1 - Steel ref 2	-

Dimensions

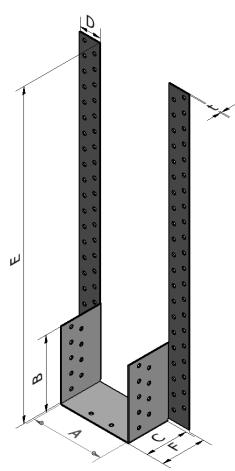
		Die	manaiar	o [mm]				Holes					
Blank		Dimensions [mm]								Joist			
	Α	В	С	D	E	F	t	Qty	Size	Qty	Size		
AG703	36-98	(344-A)/2	48	26.2	(680-A)/2	49.2	1.5	16	Ø4.5	10	Ø4.5		
Permitted deviation	-	-	±1.0	±1.0		±1.0	-	-	-	-	-		

Parameters have to be used with equation in Annex C

Parameters for AG703 - F1 - timber to timber

- aramotore		1 1 11111111111111111111111111111111111	to timbor							
Model	ı	l _{ef}	s	B _{eff}	a-0.5a _c	е	C _{hor}	k ef	d	n _{eff} (per flange)
AG703/38	25	74	25	78	143	26	10	1.04	1	6
AG703/45	25	78	25	78	143	26	10	1.04	1	6
AG703/58	25	84	25	76.1	143	26	10	1.04	1	6
AG703/64	25	85	25	74.6	143	26	10	1.04	1	6
AG703/76	25	85	25	71.8	143	26	10	1.04	1	6
AG703/89	25	85	25	68.6	143	26	10	1.04	1	6
AG703/98	25	85	25	66.5	143	26	10	1.04	1	6

Page 53 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07


		Supportii Fast	Supported Timber Fasteners	
Hanger Type	Installation Configuration	ARS 3	3.1x35	
		Тор	Face	ARS 3.1
AG703	Face Fix	-	16	4
AG703	Wrap Over	4	2	4

D2 AG713 Straps hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
AG713	Steel ref 1 - Steel ref 2	-

Dimensions

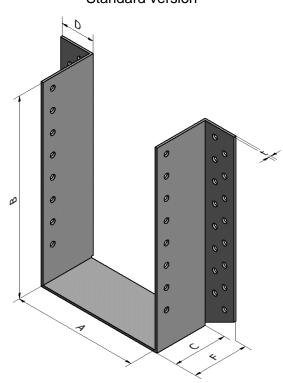
	Dimensions [mm]								Holes			
Blank	Dimensions [mm]							Header Joist				
	Α	В	С	D	E	F	t	Qty	Size	Qty	Size	
AG713	80-100	(300-A)/2	58	30	(970-A)/2	61.5	1.5	84	Ø5	18	Ø5	
Permitted deviation	-	-	±1.0	±1.0		±1.0	-	-	-	-	-	

Parameters have to be used with equation in Annex C.

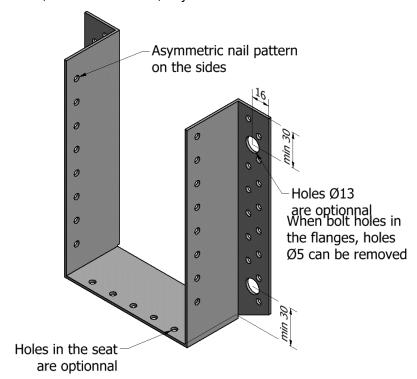
Parameters for AG713 - F1 - timber to timber

Model	I	l _{ef}	S	B _{eff}	a-0.5a _c	е	Chor	k ef	d	n _{eff} (per flange)
AG713/80	30	90	30	81	232.5	33.5	10	0.65	1	4
AG713/90	30	90	30	78	232.5	33.5	10	0.65	1	4
AG713/100	30	90	30	75	232.5	33.5	10	0.65	1	4

	Installation	Supporting Tir	Supported Timber Fasteners	
Hanger Type	Configuration			50
		Тор	Face	ARS 4.0x50
AG713	Face Fix	-	20	4
AG/13	Wrap Over	4	2	4


D3 BSD Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
BSD	Steel ref 1 - Steel ref 2	-


Dimensions

		D	mono	ione In	am1				Н	oles		
		Di	illelis	ions [n				ı	Header		Joist	
	Α	В	С	D	F	Т	Qty	Size	Qty	Size	Qty	Size
BSD A/100	34 - 250	100	50	30 + t	50 + t	2,0 - 2.5 - 3,0	16	Ø5			8	Ø5
BSD A/120	34 - 250	120	50	30 + t	50 + t	2,0 - 2.5 - 3,0	20	Ø5			10	Ø5
BSD A/140	34 - 250	140	50	30 + t	50 + t	2,0 - 2.5 - 3,0	24	Ø5			12	Ø5
BSD A/160	34 - 250	160	50	30 + t	50 + t	2,0 - 2.5 - 3,0	28	Ø5			14	Ø5
BSD A/180	34 - 250	180	50	30 + t	50 + t	2,0 - 2.5 - 3,0	32	Ø5		Up to Ø13	16	Ø5
BSD A/200	34 - 250	200	50	30 + t	50 + t	2,0 - 2.5 - 3,0	36	Ø5	anacial		18	Ø5
BSD A/220	34 - 250	220	50	30 + t	50 + t	2,0 - 2.5 - 3,0	40	Ø5	special		20	Ø5
BSD A/240	34 - 250	240	50	30 + t	50 + t	2,0 - 2.5 - 3,0	44	Ø5			22	Ø5
BSD A/260	34 - 250	260	50	30 + t	50 + t	2,0 - 2.5 - 3,0	48	Ø5			24	Ø5
BSD A/280	34 - 250	280	50	30 + t	50 + t	2,0 - 2.5 - 3,0	52	Ø5			26	Ø5
BSD A/300	34 - 250	300	50	30 + t	50 + t	2,0 - 2.5 - 3,0	56	Ø5			28	Ø5
BSD A/320	34 - 250	320	50	30 + t	50 + t	2,0 - 2.5 - 3,0	60	Ø5			30	Ø5
Permitted deviation	±1.5	±1.5	±1.5	±1.5	±1.5	-	-	-	-	-	-	-

Standard version

Special version - bolt holes, holes in the seat, asymmetric holes in the sides

Some cutted holes may appear at the bottom and top of the flanges. They are not used for fasteners

Parameters have to be used with equation in Annex C.

k_{H,1} for Joist Hanger BSD and BSDI - Full nailing - F1

	50 mm ≤ A ≤ 250 mm								
	symmet	tric na	ail pat	tern					
В	k _{H,1}	n _H	nJ	R ¹					
100	14.2	16	8	40					
120	20.8	20	10	50					
140	28.6	24	12	60					
160	37.7	28	14	70					
180	48.1	32	16	80					
200	59.7	36	18	90					
220	72.6	40	20	100					
240	86.7	44	22	110					
260	102.1	48	24	120					
280	118.7	52	26	130					
300	136.6	56	28	140					
320	155.8	60	30	150					

In case of intermediate height, $k_{H,1}$ can be calculated by linear interpolation in relation to number of fasteners in the header.

 $k_{\text{H},1}$ value can be used both for column and beam.

For BSDI B<60 mm, only partial nailing is possible.

Page 58 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

	34 mm ≤ A ≤ 250 mm asymmetric nail pattern								
В	k _{H,1}	n _H	nJ	\mathbb{R}^1					
100	14.5	16	7	40					
120	21.0	20	9	50					
140	28.9	24	11	60					
160	38.0	28	13	70					
180	48.3	32	15	80					
200	60.0	36	17	90					
220	72.8	40	19	100					
240	87.0	44	21	110					
260	102.3	48	23	120					
280	119.0	52	25	130					
300	136.9	56	27	140					
320	156.0	60	29	150					

In case of intermediate height, $k_{H,1}$ can be calculated by linear interpolation in relation to number of fasteners in the header.

 $k_{\text{H},1}$ value can be used both for column and beam.

For BSDI B<60 mm, only partial nailing is possible.

k_{H,1} for Joist Hanger BSD and BSDI - Partial nailing - F1

	50 mi	m ≤ A	≤ 250	mm
	symm	etric r	nail pa	ttern
В	k _{H,1}	n _H	nJ	R¹
100	9.5	8	4	30
120	12.8	10	6	50
140	17.6	12	6	50
160	22.2	14	8	70
180	28.3	16	8	70
200	34.2	18	10	90
220	41.5	20	10	90
240	48.6	22	12	110
260	57.2	24	12	110
280	65.6	26	14	130
300	75.4	28	14	130
320	85.0	30	16	150

In case of intermediate height, $k_{H,1}$ can be calculated by linear interpolation in relation to number of fasteners in the header.

 $k_{\text{H},1}$ value can be used both for column and beam.

	34 mm ≤ A ≤ 250 mm											
	Asymmetric nail pattern											
В	k _{H,1}	k _{H,1} n _H n _J R ¹										
100	9.5	8	4	35								
120	13.2	10	5	46								
140	17.6	12	6	55								
160	22.7	22.7 14 7 66										
	34 mı	m≤A	≤ 250	mm								

Page 59 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

	Asymn	netric	nail pa	attern
В	k _{H,1}	n _H	nJ	R¹
180	28.3	16	8	75
200	34.6	18	9	86
220	41.5	20	10	95
240	49.1	22	11	105
260	57.2	24	12	115
280	66.0	26	13	125
300	75.4	28	14	135
320	85.5	30	15	145

In case of intermediate height, $k_{H,1}$ can be calculated by linear interpolation. $k_{H,1}$ value can be used both for column and beam

 $k_{H,2}$ for BSD and BSDI - 34 mm \leq A \leq 250 mm - Full or partial nailing - F2

NH,2 101 BOB		. = / (= 200 111111	ran or partial maining 12			
Blank		oer of nails header	k _{H2}			
	Full nailing	Partial nailing	Full nailing	Partial nailing		
BSD A/100	16	8	14,8	7,1		
BSD A/120	20	10	21,6	10,4		
BSD A/140	24	12	29,6	14,3		
BSD A/160	28	14	38,9	18,8		
BSD A/180	32	16	49,4	24,0		
BSD A/200	36	18	61,2	29,8		
BSD A/220	40	20	74,2	36,2		
BSD A/240	44	22	88,5	43,3		
BSD A/260	48	24	104,0	51,0		
BSD A/280	52	26	120,8	59,3		
BSD A/300	56	28	138,8	68,2		
BSD A/320	60	30	158,1	77,8		

k_{H,2} value can be used both for column and beam

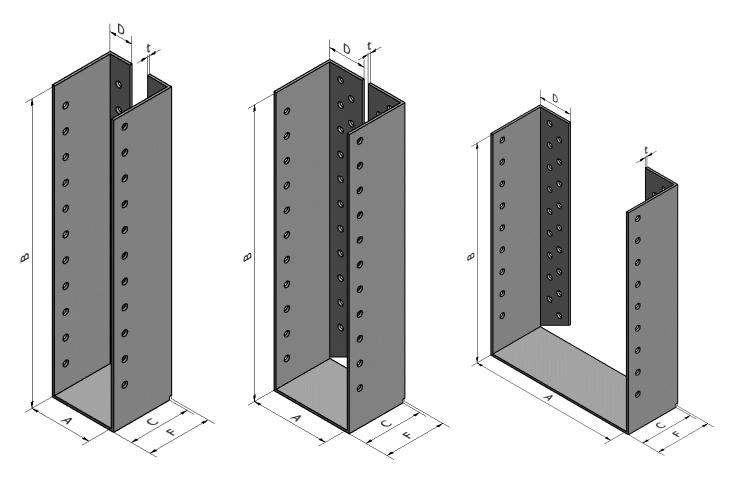
n_{i.ef.1} and n_{i.ef.2} for BSD and BSDI - 34 mm≤ A ≤ 250mm - Full or partial nailing - F1 or F2

Blank		nber of nails ne joist		F1	F2		
Dialik	Full nailing	Partial nailing	Full nailing	Partial nailing	Full nailing	Partial nailing	
	1 un naming	Fartial flaming	n _{J,ef,1}	n _{J,ef,1}	n _{J,ef,2}	n _{J,ef,2}	
BSD A/100	7	4	2,8	0,95	2,69	0,93	
BSD A/120	9	5	4,56	3,35	4,3	3,02	
BSD A/140	11	6	6,83	4,04	6,29	3,49	
BSD A/160	13	7	9,41	6,16	8,48	5,21	
BSD A/180	15	8	12,17	6,58	10,79	5,46	
BSD A/200	17	9	14,98	9,37	13,13	7,56	
BSD A/220	19	10	17,79	9,55	15,47	7,66	
BSD A/240	21	11	20,55	12,57	17,8	9,91	
BSD A/260	23	12	23,24	12,59	20,1	9,92	
BSD A/280	25	13	25,86	15,58	22,37	12,2	
BSD A/300	27	14	28,4	15,52	24,62	12,17	
BSD A/320	29	15	30,88	18,37	26,84	14,43	

D4 BSDI Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
BSDI	Steel ref 1 - Steel ref 2	-

Dimensions


Jillensions	Dimensions [mm]							Нс	les	
			Dillio	ensions			Hea	ader	Jo	ist
	Α	В	С	D	F	t	Qty	Size	Qty*	Size
BSDI A/100	34 - 59	100	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	8	Ø5	7	Ø5
BSDI A/120	34 - 59	120	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	10	Ø5	9	Ø5
BSDI A/140	34 - 59	140	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	12	Ø5	11	Ø5
BSDI A/160	34 - 59	160	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	14	Ø5	13	Ø5
BSDI A/180	34 - 59	180	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	16	Ø5	15	Ø5
BSDI A/200	34 - 59	200	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	18	Ø5	17	Ø5
BSDI A/220	34 - 59	220	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	20	Ø5	19	Ø5
BSDI A/240	34 - 59	240	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	22	Ø5	21	Ø5
BSDI A/260	34 - 59	260	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	24	Ø5	23	Ø5
BSDI A/280	34 - 59	280	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	26	Ø5	25	Ø5
BSDI A/300	34 - 59	300	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	28	Ø5	27	Ø5
BSDI A/320	34 - 59	320	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	30	Ø5	29	Ø5
BSDI A/100	60 - 250	100	50	30 + t	50 + t	2.0 - 2.5 - 3.0	16	Ø5	8	Ø5
BSDI A/120	60 - 250	120	50	30 + t	50 + t	2.0 - 2.5 - 3.0	20	Ø5	10	Ø5
BSDI A/140	60 - 250	140	50	30 + t	50 + t	2.0 - 2.5 - 3.0	24	Ø5	12	Ø5
BSDI A/160	60 - 250	160	50	30 + t	50 + t	2.0 - 2.5 - 3.0	28	Ø5	14	Ø5
BSDI A/180	60 - 250	180	50	30 + t	50 + t	2.0 - 2.5 - 3.0	32	Ø5	16	Ø5
BSDI A/200	60 - 250	200	50	30 + t	50 + t	2.0 - 2.5 - 3.0	36	Ø5	18	Ø5
BSDI A/220	60 - 250	220	50	30 + t	50 + t	2.0 - 2.5 - 3.0	40	Ø5	20	Ø5
BSDI A/240	60 - 250	240	50	30 + t	50 + t	2.0 - 2.5 - 3.0	44	Ø5	22	Ø5
BSDI A/260	60 - 250	260	50	30 + t	50 + t	2.0 - 2.5 - 3.0	48	Ø5	24	Ø5
BSDI A/280	60 - 250	280	50	30 + t	50 + t	2.0 - 2.5 - 3.0	52	Ø5	26	Ø5
BSDI A/300	60 - 250	300	50	30 + t	50 + t	2.0 - 2.5 - 3.0	56	Ø5	28	Ø5
BSDI A/320	60 - 250	320	50	30 + t	50 + t	2.0 - 2.5 - 3.0	60	Ø5	30	Ø5
Permitted deviation	±1.5	±1.5	±1.5	±1.5		-	ı	-	-	ı

^{*}Optional holes can be made on the seat

 $34 \text{ mm} \le A \le 59 \text{ mm} - B \le 320 \text{ mm}$

60 mm ≤ A ≤ 250 mm - B ≤ 320 mm

 $60 \text{ mm} \le A \le 250 \text{ mm} - B \le 320 \text{ mm}$

Parameters have to be used with equation in Annex C.

k_{H,1} for Joist Hanger BSDI - Full nailing - F1

See Annex D3 BSD Joist Hanger

$k_{\text{H},1}$ for Joist Hanger BSDI - partial nailing - F1

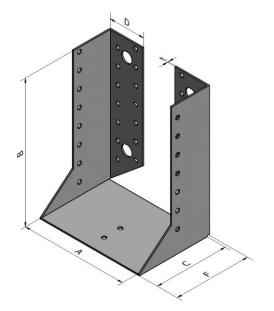
See Annex D3 BSD Joist Hanger

k_{H,2} for BSDI - Full or partial nailing - F2

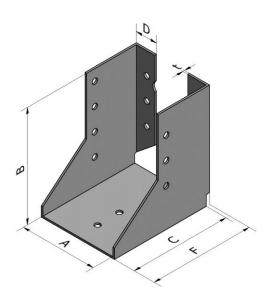
See Annex D3 BSD Joist Hanger

D5 BSIN Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
BSIN	Steel ref 1 - Steel ref 2	-

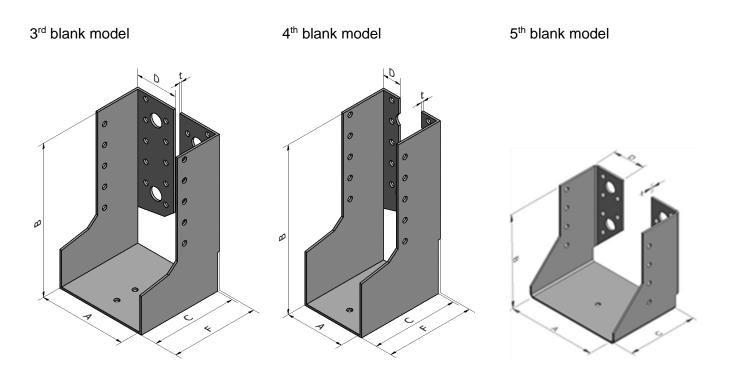

Dimensions - Table a

Blank sizes for BSIN A/B are equal to A + 2 * B


The table below is valid for all BSIN except for the specific sizes listed in *Table b*.

			Dimons	ione Ir	nm1					Н	loles		
	Blank		Dimens	ions [i				Header				Joist	
		Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
	200	64-80	(200-A)/2	76	33.5	82	2	6	Ø5	2	Ø12	4	Ø5
le Ge	250	64-80	(250-A)/2	76	33.5	82	2	10	Ø5	2	Ø12	6	Ø5
moc	300	64-80	(300-A)/2	76	33.5	82	2	16	Ø5	4	Ø12	9	Ø5
blank model	340	64-120	(340-A)/2	76	33.5	82	2	16	Ø5	4	Ø12	10	Ø5
t bla	380	64-120	(380-A)/2	76	33.5	82	2	20	Ø5	4	Ø12	12	Ø5
1 st	440	64-120	(440-A)/2	76	33.5	82	2	26	Ø5	4	Ø12	15	Ø5
	500	64-120	(500-A)/2	76	33.5	82	2	32	Ø5	6	Ø12	18	Ø5
nd .nk del	200	38-63	(200-A)/2	76	17.5	82	2	4	Ø5	-	-	4	Ø5
2 nd blank model	250	38-63	(250-A)/2	76	17.5	82	2	6	Ø5	-	-	6	Ø5
	Permitted deviation	-	-	±1.0	±1.0	±1.0	1	-1	-	-	-	-	-

1st blank model


2nd blank model

Dimensions - Table b

The table below is only valid for specific sizes listed in first column.

			Dimension [mm]							Но	les			
Туре	Blank model	Dimension [mm]						Header				Joist		
		Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size	
BSIN45/127	4 th blank model	45	127	84	18.5	86	2	8	Ø5	-	-	8	Ø5	
BSIN48/126	4 th blank model	48	126	84	18.5	86	2	8	Ø5	-	-	8	Ø5	
BSIN100/100	3 rd blank model	100	100	84	41.5	86	2	16	Ø5	4	Ø13	8	Ø5	
BSIN100/100	5 th blank model	100	100	76	34.0	80	2	12	Ø5	4	Ø12	8	Ø5	
BSIN48/166	4 th blank model	48	166	84	18.5	86	2	10	Ø5	ı	ı	10	Ø5	
BSIN60/160	4 th blank model	60	160	84	18.5	86	2	10	Ø5	ı	ı	10	Ø5	
BSIN140/120	3 rd blank model	140	120	84	41.5	86	2	20	Ø5	4	Ø13	10	Ø5	
BSIN140/180	3 rd blank model	140	180	84	41.5	86	2	32	Ø5	6	Ø13	16	Ø5	

Parameters have to be used with equation in Annex C.

 $k_{H,1}$ for Joist Hanger BSIN 1st blank model - Full nailing - F_1

Kn,i i Oi	200 250 300 34					_		_	440 500					
	ĺ	2 00		250	3	00 		40	3	80			5	
	nн	nJ	nн	nJ	nн	nJ	nн	Ŋ	n _H	nJ	n _H	nJ	n _H	nJ
	6	4	10	6	16	9	16	10	20	12	26	15	32	18
Α	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1
64	68	6.3	93	11.8	118	21.5	138	29.1	158	39.1	188	58.1	218	77.3
66	67	6.1	92	11.5	117	21.1	137	28.7	157	38.6	187	57.5	217	76.6
68	66	5.9	91	11.2	116	20.7	136	28.3	156	38.2	186	56.9	216	75.8
70	65	5.7	90	10.9	115	20.3	135	27.9	155	37.7	185	56.3	215	75.1
72	64	5.5	89	10.7	114	20.0	134	27.5	154	37.2	184	55.7	214	74.4
74	63	5.3	88	10.4	113	19.6	133	27.1	153	36.7	183	55.1	213	73.7
76	62	5.2	87	10.1	112	19.2	132	26.7	152	36.2	182	54.5	212	73.0
78	61	5.0	86	9.9	111	18.9	131	26.3	151	35.8	181	53.9	211	72.3
80	60	4.8	85	9.6	110	18.5	130	25.9	150	35.3	180	53.3	210	71.6
82	-	-	-	-	-	-	129	25.5	149	34.8	179	52.7	209	70.9
84	-	-	-	-	-	-	128	25.1	148	34.3	178	52.1	208	70.2
86	-	-	-	-	-	-	127	24.7	147	33.9	177	51.5	207	69.5
88	-	-	-	-	-	-	126	24.3	146	33.4	176	50.9	206	68.8
90	-	-	-	-	-	-	125	23.9	145	32.9	175	50.3	205	68.2
92	-	-	-	-	-	-	124	23.5	144	32.5	174	49.7	204	67.5
94	-	-	-	-	-	-	123	23.1	143	32.0	173	49.1	203	66.8
96	-	-	-	-	-	-	122	22.7	142	31.5	172	48.6	202	66.1
98	-	-	-	-	-	-	121	22.4	141	31.1	171	48.0	201	65.4
100	-	-	-	-	-	-	120	22.0	140	30.6	170	47.4	200	64.8
102	-	-	-	-	-	-	119	21.6	139	30.2	169	46.8	199	64.1
104	-	-	-	-	-	-	118	21.2	138	29.7	168	46.3	198	63.4
106	-	-	-	-	-	-	117	20.8	137	29.3	167	45.7	197	62.7
108	-	-	-	-	-	-	116	20.5	136	28.8	166	45.1	196	62.1
110	-	-	-	-	-	-	115	20.1	135	28.4	165	44.6	195	61.4
112	-	-	-	-	-	-	114	19.7	134	27.9	164	44.0	194	60.7
114	-	-	-	-	-	-	113	19.3	133	27.5	163	43.4	193	60.1
116	-	-	-	-	-	-	112	19.0	132	27.0	162	42.9	192	59.4
118	-	-	-	-	-	-	111	18.6	131	26.6	161	42.3	191	58.8
120	-	-	-	-	-	-	110	18.3	130	26.2	160	41.8	190	58.1

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

Page 65 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

 $\underline{k_{H,1}}$ for Joist Hanger BSIN 2^{nd} blank model - Full nailing - F_1

,.	20			51411K 11
	20	U	25	וטס
	n_H	n_J	n_H	n_J
	4	4	6	6
Α	В	k _{H,1}	В	k _{H,1}
38	81	5,1	106	8,1
40	80	5,0	105	8,0
42	79	4,9	104	7,8
44	78	4,8	103	7,6
46	77	4,6	102	7,5
48	76	4,5	101	7,3
50	75	4,4	100	7,1
52	74	4,2	99	7,0
54	73	4,1	98	6,8
56	72	4,0	97	6,7
58	71	3,9	96	6,5
60	70	3,8	95	6,3
62	69	3,6	94	6,2
63	69	3,6	94	6,1

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

Page 66 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

 $\underline{k_{H,1}}$ for Joist Hanger BSIN 1st blank model - Partial nailing - F_1

RH,1 TOT GOTS		250		00		40		80	4	40	5	00
	n _H	$n_{ m J}$	n_H	nJ	n _H	nJ	n _H	nJ	n_H	n_J	n _H	$n_{ m J}$
	6	4	10	6	10	6	12	6	14	8	18	10
А	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}
64	93	6.5	118	14.1	138	19.3	158	25.5	188	31.1	218	45.7
66	92	6.4	117	13.9	137	19.0	157	25.2	187	30.8	217	45.3
68	91	6.2	116	13.7	136	18.7	156	24.9	186	30.4	216	44.9
70	90	6.0	115	13.4	135	18.5	155	24.5	185	30.1	215	44.5
72	89	5.9	114	13.2	134	18.2	154	24.2	184	29.8	214	44.1
74	88	5.7	113	13.0	133	17.9	153	23.9	183	29.4	213	43.7
76	87	5.5	112	12.7	132	17.7	152	23.6	182	29.1	212	43.3
78	86	5.4	111	12.5	131	17.4	151	23.3	181	28.8	211	42.9
80	85	5.2	110	12.3	130	17.2	150	23.0	180	28.4	210	42.5
82	-	-	-	-	129	16.9	149	22.7	179	28.1	209	42.1
84	-	-	-	-	128	16.6	148	22.4	178	27.8	208	41.7
86	-	-	-	-	127	16.4	147	22.1	177	27.4	207	41.3
88	-	-	-	-	126	16.1	146	21.8	176	27.1	206	40.9
90	-	-	-	-	125	15.9	145	21.5	175	26.8	205	40.5
92	-	-	-	-	124	15.6	144	21.2	174	26.5	204	40.1
94	-	-	-	-	123	15.4	143	20.9	173	26.1	203	39.7
96	-	-	-	-	122	15.1	142	20.6	172	25.8	202	39.3
98	-	-	-	-	121	14.9	141	20.3	171	25.5	201	38.9
100	-	-	•	•	120	14.6	140	20.1	170	25.2	200	38.5
102	-	-	-	-	119	14.4	139	19.8	169	24.9	199	38.1
104	-	-	-	-	118	14.1	138	19.5	168	24.5	198	37.7
106	-	-	•	•	117	13.9	137	19.2	167	24.2	197	37.3
108	-	-	-	-	116	13.7	136	18.9	166	23.9	196	37.0
110	-	-	-	-	115	13.4	135	18.6	165	23.6	195	36.6
112	-	-	-	-	114	13.2	134	18.3	164	23.3	194	36.2
114	-	-	-	-	113	13.0	133	18.1	163	23.0	193	35.8
116	-	-	1	-	112	12.7	132	17.8	162	22.7	192	35.4
118	-	-	-	-	111	12.5	131	17.5	161	22.4	191	35.1
120	-	-	-	-	110	12.3	130	17.2	160	22.1	190	34.7

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation.

 $k_{H,2}$ for BSIN - Full or partial nailing - F_2

		Total nun	nber of nails		k _{H2}
	Blank	in the	header		KH2
	Diank	Full Partial nailing nailing		Full nailing	Partial nailing
	200	6	4	3.5	2.6
gel	250	10	6	7.1	4.8
μοτ	300	16	10	16.6	11.4
- ¥	340	16	10	16.6	11.4
1st blank model	380	20	12	23.9	15.8
1 st	440	26	14	35.2	20.8
	500	32	18	54.4	32.9
2 nd blank model	200	4	-	2.6	-
2 bla mo	250	6	-	4.8	-

 $k_{\text{H},1}$ and $k_{\text{H},2}$ for BSIN for specific sizes listed in Table b

	k _{H,1}		k _i	1,2	n	Н	n	IJ
Туре	Full nailing	Partial nailing	Full nailing	Partial nailing	Full nailing	Partial nailing	Full nailing	Partial nailing
BSIN45/127	17.3	-	7.8	-	8	-	8	-
BSIN48/126	17	-	7.8	-	8	-	8	-
BSIN100/100	17.4	11.1	16.4	7.9	16	8	8	4
BSIN100/100*	14.5	10.9	10.6	7.8	12	8	8	4
BSIN48/166	27.2	-	11.4	-	10	-	10	-
BSIN60/160	25.6	-	11.4	-	10	-	10	-
BSIN140/120	25	15.4	23.8	11.4	20	10	10	6
BSIN140/180	56.1	36.5	54.5	25.9	32	16	16	8


^{* 5&}lt;sup>th</sup> blank model

D6 BSIL Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
BSIL	Steel ref 1 - Steel ref 2	-

Dimensions

			Dimensio		Holes					
Blank			Dillielisio	Heade	er	Joist				
	Α	В	С	D	F	Т	Qty	Size	Qty	Size
90/195	90	195	60	42	62	2	18	Ø5	20	Ø5
90/235	90	235	60	42	62	2	24	Ø5	22	Ø5
100/190	100	190	60	42	62	2	18	Ø5	16	Ø5
100/230	100	230	60	42	62	2	22	Ø5	20	Ø5
115/223	115	223	60	42	62	2	22	Ø5	20	Ø5
120/180	120	180	60	42	62	2	18	Ø5	16	Ø5
120/220	120	220	60	42	62	2	22	Ø5	20	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-

Parameters have to be used with equation in Annex C.

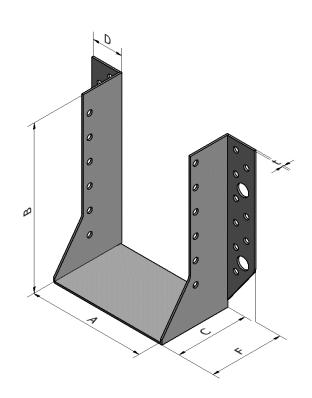
$k_{H,1}$ for Joist Hanger BSIL - Full nailing - F1

Model	Number	k _{H,1}	
	n_{H}	nJ	,,
90/195	18	18	27.8
90/235	22	22	40.1
100/190	16	18	26.6
100/230	20	22	38.6
115/223	20	20	36.1
120/180	16	16	23.8
120/220	20	20	35.3

$k_{H,1}$ for Joist Hanger BSIL - Partial nailing - F1

Model	Number	Number of nails					
Wiodei	n _H	nJ	k _{H,1}				
90/195	9	10	15.2				
90/235	11	11	21.3				
100/190	8	9	14.4				
100/230	10	11	20.7				
115/223	10	10	19.3				
120/180	8	8	12.9				
120/220	10	10	18.9				

k_{H,2} for BSIL - Full or partial nailing - F2


<u>.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	<u> </u>					
	Total nun	nber of nails	k _{H2}			
Blank	in the	e header				
	Full nailing	Partial nailing	Full nailing	Partial nailing		
90/195	18	9	27	13.48		
90/235	22	11	39.1	19.57		
100/190	16	9	27	13.48		
100/230	20	11	39.1	19.57		
115/223	20	10	32.8	16.38		
120/180	16	8	21.7	10.85		
120/220	20	10	32.8	16.38		

D7 BSNN Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
BSNN	Steel ref 1 - Steel ref 2 - Steel ref 4	-

Dimensions

Difficitions									н	oles		
Blank	Dimensions [mm]							Hea	Joist			
Dialik	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
230	38-76	(230-A)/2	60	27	64	2	8	Ø5	2	Ø11	6	Ø5
260	38-76	(260-A)/2	60	27	64	2	12	Ø5	2	Ø11	6	Ø5
320	38-100	(320-A)/2	60	27	64	2	16	Ø5	2	Ø11	10	Ø5
380	38-106	(380-A)/2	60	27	64	2	18	Ø5	4	Ø11	12	Ø5
440	38-140	(440-A)/2	60	27	64	2	22	Ø5	4	Ø11	14	Ø5
500	38-140	(500-A)/2	60	27	64	2	26	Ø5	4	Ø11	16	Ø5
				Spec	cific si	zes						
BSNN100/100	100	100	60	27	64	2	14	Ø5	2	Ø11	8	Ø5
BSNN120/110	120	110	60	27	64	2	12	Ø5	2	Ø11	8	Ø5
BSNN140/120	140	120	60	27	64	2	16	Ø5	2	Ø11	10	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	1	1	-	1	-	-	-

Page 71 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

Parameters have to be used with equation in Annex C.

 $k_{\text{H},1}$ for Joist Hanger BSNN - Full nailing - F1

		230	260		3	20	380		440		500	
	пн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ
	8	6	12	6	16	10	18	12	22	14	26	16
Α	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}
36	97	15.7	112	24.8	142	39.1	172	56.4	202	78.3	232	105.8
40	95	15.1	110	23.9	140	38.1	170	55.2	200	76.9	230	104.1
44	93	14.4	108	23.1	138	37.0	168	54.0	198	75.4	228	102.4
48	91	13.8	106	22.2	136	35.9	166	52.8	196	74.0	226	100.7
52	89	13.2	104	21.4	134	34.9	164	51.6	194	72.6	224	99.0
56	87	12.5	102	20.6	132	33.8	162	50.4	192	71.1	222	97.4
60	85	11.9	100	19.7	130	32.8	160	49.2	190	69.7	220	95.7
64	83	11.3	98	18.9	128	31.8	158	48.0	188	68.3	218	94.0
68	81	10.7	96	18.1	126	30.8	156	46.9	186	66.9	216	92.4
72	79	10.1	94	17.4	124	29.8	154	45.7	184	65.5	214	90.7
76	77	9.6	92	16.6	122	28.8	152	44.5	182	64.1	212	89.1
80					120	27.8	150	43.4	180	62.7	210	87.5
90					115	25,4	145	40.5	175	59.3	205	83.4
100					110	23,0	140	37.7	170	56.0	200	79.4
110									165	52.7	195	75.5
120									160	49.4	190	71.6
130									155	46.3	185	67.8
140									150	43,2	180	64.0

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation. $k_{\text{H},1}$ value can be used both for column and beam.

k_{H,1} for Joist Hanger BSNN- Partial nailing - F1

1411,1 101 00101												
		230	2	60	3	20	3	80	44	0	50	0
	nΗ	nJ	nн	nJ	nн	nJ	n _H	nJ	nн	nJ	nн	nJ
	6	3	8	4	10	6	12	6	14	8	16	8
Α	В	k H,1	В	k H,1	В	k H,1	В	k _{H,1}	В	k _{H,1}	Н	k H,1
36	97	15.1	112	19.0	142	27.9	172	39.9	202	54.1	232	70.3
40	95	14.6	110	18.3	140	27.2	170	39.1	200	53.1	230	69.1
44	93	14.0	108	17.7	138	26.4	168	38.2	198	52.1	228	68.0
48	91	13.4	106	17.0	136	25.7	166	37.4	196	51.1	226	66.9
52	89	12.9	104	16.4	134	25.0	164	36.5	194	50.1	224	65.8
56	87	12.3	102	15.8	132	24.3	162	35.7	192	49.2	222	64.7
60	85	11.8	100	15.2	130	23.6	160	34.8	190	48.2	220	63.7
64	83	11.3	98	14.6	128	22.8	158	34.0	188	47.2	218	62.6
68	81	10.7	96	14.0	126	22.1	156	33.2	186	46.3	216	61.5
72	79	10.2	94	13.4	124	21.5	154	32.4	184	45.3	214	60.4
76	77	9.7	92	12.8	122	20.8	152	31.5	182	44.4	212	59.3
80					120	20.1	150	30.7	180	43.5	210	58.3
90					115	18,4	145	28.7	175	41.1	205	55.6
100					110	16,8	140	26.8	170	38.8	200	53.0
110									165	36.6	195	50.5
120									160	34.4	190	47.9
130									155	32.3	185	45.4
140									150	30.2	180	43.0

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

 $k_{\text{H},1}$ value can be used both for column and beam.

k_{H,2} for BSNN - Full or partial nailing - F2

Blank	Total numb		k _{H2}		
	Full nailing Partial nailing		Full nailing Partial nailin		
230	8	6	9.6	6.7	
260	12	8	15.9	10.7	
320	16	10	25.6	15.7	
380	18	12	29.9	21.7	
440	22	14	44.3	28.6	
500	26	16	58.1	36.4	

 $k_{H,2}$ value can be used both for column and beam

 $k_{\text{H},1}$ and $k_{\text{H},2}$ for specific sizes of BSNN

KH,1 dild KH,2 for specific sizes of bottle												
	k _{H,1}		k H,2		nн		nJ					
Туре	Full nailing	Partial nailing	Full nailing	Partial nailing	Full nailing	Partial nailing	Full nailing	Partial nailing				
BSNN100/100	18.0	14.4	21.3	13.0	14	8	8	4				
BSNN120/110	23.0	17.3	15.9	10.7	12	8	8	4				
BSNN140/120	29.7	19.5	23.9	15.7	16	10	10	6				

Characteristic capacities for BSNN - with connector screw SSH/SSF without predrilling

			Produ	ct capac	cities - Ti	mber to 1	Timber - I	_arge cor	nnector s	crew		
		Fastener							cities - T		24	
Blank		Header	J	oist		R	1.k			R	2.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
	2	SSH10.0x40 ⁽¹⁾	6	CNA*	6.65	6.86	7.16	7.21	6.49	6.75	7.13	7.21
BSNN230	2	SSH10.0x50 ⁽¹⁾	6	CNA*	7.8	8.5	9.0	9.2	7.8	8.3	8.9	9.1
	2	SSH10.0x100	6	CNA*	7.8	8.6	10.1	10.3	7.8	8.7	9.9	10.1
	2	SSH10.0x40 ⁽¹⁾	6	CNA*	6.65	6.86	7.16	7.21	6.73	6.92	7.17	7.21
BSNN260	2	SSH10.0x50 ⁽¹⁾	6	CNA*	7.8	8.5	9.0	9.2	7.8	8.6	9.1	9.2
	2	SSH10.0x100	6	CNA*	7.8	8.6	10.1	10.3	7.8	8.7	10.2	10.4
	2	SSH10.0x40 ⁽¹⁾	10	CNA*	7.21	7.21	7.21	7.21	7.21	7.21	7.21	7.21
BSNN320	2	SSH10.0x50 ⁽¹⁾	10	CNA*	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4
	2	SSH10.0x100	10	CNA*	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9
	4	SSH10.0x40 ⁽¹⁾	12	CNA*	12.70	12.70	12.70	12.70	12.70	12.70	12.70	12.70
BSNN380	4	SSH10.0x50 ⁽¹⁾	12	CNA*	15.6	16.3	16.6	16.6	15.7	16.4	16.6	16.6
	4	SSH10.0x100	12	CNA*	15.7	17.3	19.1	19.2	15.7	17.3	19.2	19.2
	4	SSH10.0x40 ⁽¹⁾	14	CNA*	12.70	12.70	12.70	12.70	12.70	12.70	12.70	12.70
BSNN440	4	SSH10.0x50 ⁽¹⁾	14	CNA*	16.6	16.6	16.6	16.6	16.6	16.6	16.6	16.6
	4	SSH10.0x100	14	CNA*	18.3	19.1	19.3	19.3	18.3	19.1	19.3	19.3
	4	SSH10.0x40 ⁽¹⁾	16	CNA*	13.38	13.38	13.38	13.38	13.38	13.38	13.38	13.38
BSNN500	4	SSH10.0x50 ⁽¹⁾	16	CNA*	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
	4	SSH10.0x100	16	CNA*	20.1	20.3	20.3	20.3	20.1	20.3	20.3	20.3

			Produ	ct capac	cities - Ti	mber to 1	Timber - I	_arge cor	nector s	crew		
		Fastener	S			С	haracteri	stic capa	cities - T	imber C2	24	
Blank		Header	J	oist		R	3.k			R	4.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
	2	SSH10.0x40 ⁽¹⁾	6	CNA*	2.10	2.20	2.72	3.23	5.0	5.0	5.0	5.0
BSNN230	2	SSH10.0x50 ⁽¹⁾	6	CNA*	2.5	2.9	3.6	4.2	5.0	5.0	5.0	5.0
	2	SSH10.0x100	6	CNA*	2.5	2.9	4.1	4.9	5.0	5.0	5.0	5.0
	2	SSH10.0x40 ⁽¹⁾	6	CNA*	1.44	1.51	1.90	2.31	5.0	5.0	5.0	5.0
BSNN260	2	SSH10.0x50 ⁽¹⁾	6	CNA*	1.9	2.0	2.5	3.0	5.0	5.0	5.0	5.0
	2	SSH10.0x100	6	CNA*	2.2	2.3	2.9	3.5	5.0	5.0	5.0	5.0
	2	SSH10.0x40 ⁽¹⁾	10	CNA*	1.07	1.13	1.44	1.77	5.0	5.0	5.0	5.0
BSNN320	2	SSH10.0x50 ⁽¹⁾	10	CNA*	1.4	1.5	1.9	2.3	5.0	5.0	5.0	5.0
	2	SSH10.0x100	10	CNA*	1.6	1.7	2.2	2.7	5.0	5.0	5.0	5.0
	4	SSH10.0x40 ⁽¹⁾	12	CNA*	2.01	2.07	2.44	2.84	10.0	10.0	10.0	10.0
BSNN380	4	SSH10.0x50 ⁽¹⁾	12	CNA*	2.6	2.7	3.2	3.7	10.0	10.0	10.0	10.0
	4	SSH10.0x100	12	CNA*	3.0	3.1	3.7	4.3	10.0	10.0	10.0	10.0
	4	SSH10.0x40 ⁽¹⁾	14	CNA*	1.63	1.69	1.99	2.33	10.0	10.0	10.0	10.0
BSNN440	4	SSH10.0x50 ⁽¹⁾	14	CNA*	2.1	2.2	2.6	3.0	10.0	10.0	10.0	10.0
	4	SSH10.0x100	14	CNA*	2.5	2.6	3.0	3.5	10.0	10.0	10.0	10.0
	4	SSH10.0x40 ⁽¹⁾	16	CNA*	1.63	1.67	1.91	2.17	10.0	10.0	10.0	10.0
BSNN500	4	SSH10.0x50 ⁽¹⁾	16	CNA*	2.1	2.2	2.5	2.8	10.0	10.0	10.0	10.0
(4) = =	4	SSH10.0x100	16	CNA*	2.5	2.5	2.9	3.3	10.0	10.0	10.0	10.0

⁽¹⁾SSH can be replaced by SSF

The user shall verify the transversal tension in timber which is not included in these capacities.

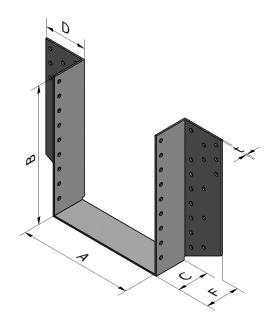
^{*}Refer to *Characteristic Capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

Characteristic capacities for BSNN - with connector screw SSH/SSF with predrilling

			Produ	ct capac	ities - Ti	mber to T	imber - L	_arge cor	nector s	crew		
		Fastener	S			С	haracteri	stic capa	cities - T	imber C2	24	
Blank		Header	J	oist		R-	1.k			R	2.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
DENINGO	2	SSH10.0x50 ⁽¹⁾	6	CNA*	7.8	8.5	9.0	9.2	7.8	8.3	8.9	9.1
BSNN230	2	SSH10.0x100	6	CNA*	7.8	8.6	10.5	11.3	7.8	8.7	10.5	11.1
DONNOGO	2	SSH10.0x50 ⁽¹⁾	6	CNA*	7.8	8.5	9.0	9.2	7.8	8.6	9.1	9.2
BSNN260	2	SSH10.0x100	6	CNA*	7.8	8.6	10.5	11.3	7.8	8.7	10.5	11.4
BSNN320	2	SSH10.0x50 ⁽¹⁾	10	CNA*	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4
DSININ320	2	SSH10.0x100	10	CNA*	12.8	13.3	13.6	13.6	12.6	13.2	13.6	13.6
BSNN380	4	SSH10.0x50 ⁽¹⁾	12	CNA*	15.6	16.3	16.6	16.6	15.7	16.4	16.6	16.6
DOININGOU	4	SSH10.0x100	12	CNA*	15.7	17.3	21.1	22.3	15.7	17.3	21.1	22.6
BSNN440	4	SSH10.0x50 ⁽¹⁾	14	CNA*	16.6	16.6	16.6	16.6	16.6	16.6	16.6	16.6
DSININ440	4	SSH10.0x100	14	CNA*	18.3	20.2	23.5	23.9	18.3	20.2	23.5	23.9
BSNN500	4	SSH10.0x50 ⁽¹⁾	16	CNA*	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
DOININGO	4	SSH10.0x100	16	CNA*	20.9	23.1	25.2	25.2	20.9	23.1	25.2	25.2

			Produ	ct capac	cities - Ti	mber to 1	Timber - I	_arge coi	nnector s	crew		
		Fastener	S			С	haracteri	stic capa	cities - T	imber C2	24	
Blank		Header	J	oist		R	3.k			R	4.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
DONINGO	2	SSH10.0x50 ⁽¹⁾	6	CNA*	2.5	2.9	3.6	4.2	5.0	5.0	5.0	5.0
BSNN230	2	SSH10.0x100	6	CNA*	2.5	2.9	4.2	5.3	5.0	5.0	5.0	5.0
BSNN260	2	SSH10.0x50 ⁽¹⁾	6	CNA*	1.9	2.0	2.5	3.0	5.0	5.0	5.0	5.0
DSININZOU	2	SSH10.0x100	6	CNA*	2.5	2.9	3.6	4.4	5.0	5.0	5.0	5.0
BSNN320	2	SSH10.0x50 ⁽¹⁾	10	CNA*	1.4	1.5	1.9	2.3	5.0	5.0	5.0	5.0
DSININ320	2	SSH10.0x100	10	CNA*	2.0	2.1	2.7	3.3	5.0	5.0	5.0	5.0
BSNN380	4	SSH10.0x50 ⁽¹⁾	12	CNA*	2.6	2.7	3.2	3.7	10.0	10.0	10.0	10.0
DOININGO	4	SSH10.0x100	12	CNA*	3.7	3.9	4.6	5.4	10.0	10.0	10.0	10.0
BSNN440	4	SSH10.0x50 ⁽¹⁾	14	CNA*	2.1	2.2	2.6	3.0	10.0	10.0	10.0	10.0
DSININ440	4	SSH10.0x100	14	CNA*	3.1	3.2	3.8	4.4	10.0	10.0	10.0	10.0
BSNN500	4	SSH10.0x50 ⁽¹⁾	16	CNA*	2.1	2.2	2.5	2.8	10.0	10.0	10.0	10.0
DOMINISOU	4	SSH10.0x100	16	CNA*	3.1	3.2	3.6	4.1	10.0	10.0	10.0	10.0

⁽¹⁾SSH can be replaced by SSF


D8 BSS Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
BSS	Steel ref 1 - Steel ref 2	-

Dimensions

			Dimensis	no [mm]				Но	les	
Blank			Dimensio	ns [mm]			Heade	r	Joist	
	Α	В	С	D	F	t	Qty	Size	Qty	Size
240	40-60	(240-A)/2	45.5	59.5	47.5	2	16	Ø5	8	Ø5
280	40-60	(280-A)/2	45.5	59.5	47.5	2	20	Ø5	10	Ø5
300	40-80	(300-A)/2	45.5	59.5	47.5	2	20	Ø5	10	Ø5
340	40-80	(340-A)/2	45.5	59.5	47.5	2	22	Ø5	12	Ø5
360	40-100	(360-A)/2	45.5	59.5	47.5	2	22	Ø5	12	Ø5
380	40-100	(380-A)/2	45.5	59.5	47.5	2	26	Ø5	14	Ø5
400	40-100	(400-A)/2	45.5	59.5	47.5	2	26	Ø5	14	Ø5
440	40-100	(440-A)/2	45.5	59.5	47.5	2	28	Ø5	16	Ø5
440*	40-140	(440*-A)/2	45.5	59.5	47.5	2	26	Ø5	14	Ø5
460	40-120	(460-A)/2	45.5	59.5	47.5	2	28	Ø5	16	Ø5
480	40-100	(480-A)/2	45.5	59.5	47.5	2	32	Ø5	18	Ø5
500	40-120	(500-A)/2	45.5	59.5	47.5	2	32	Ø5	18	Ø5
540	40-120	(540-A)/2	45.5	59.5	47.5	2	34	Ø5	20	Ø5
540*	40-160	(540*-A)/2	45.5	59.5	47.5	2	32	Ø5	18	Ø5
580	40-120	(580-A)/2	45.5	59.5	47.5	2	32	Ø5	18	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-

^{*}Alternative blank model

Parameters have to be used with equation in Annex C.

$k_{\text{H,1}}$ for Joist Hanger BSS - Full nailing - F1

	24	40	28	80	3(00	34	40	3	60	38	80	4	00	4	40	44	10*	40	60	48	30	50	00	5	40	54	lO*	5	80
	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ																
	16	8	20	10	20	10	22	12	22	12	26	14	26	14	28	16	26	14	28	16	32	18	32	18	34	20	32	18	32	18
Α	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}																								
40	100	14.4	120	22.5	130	26.4	150	34	160	37.5	170	42.3	180	47.2	200	56.8	200	57.5	210	62.2	220	67.3	230	73.2	250	84.8	250	85.4	270	119.3
42	99	14.1	119	22.1	129	26	149	33.5	159	37	169	41.8	179	46.7	199	56.3	199	57	209	61.7	219	66.7	229	72.6	249	84.2	249	84.8	269	118.5
44	98	13.8	118	21.7	128	25.6	148	33.1	158	36.6	168	41.3	178	46.2	198	55.8	198	56.5	208	61.1	218	66.1	228	72	248	83.6	248	84.2	268	117.8
46	97	13.5	117	21.3	127	25.2	147	32.7	157	36.1	167	40.8	177	45.7	197	55.2	197	56	207	60.6	217	65.5	227	71.4	247	83	247	83.6	267	117
48	96	13.2	116	20.9	126	24.8	146	32.2	156	35.7	166	40.4	176	45.3	196	54.7	196	55.4	206	60.1	216	65	226	70.8	246	82.3	246	82.9	266	116.3
50	95	12.9	115	20.5	125	24.4	145	31.8	155	35.2	165	39.9	175	44.8	195	54.2	195	54.9	205	59.5	215	64.4	225	70.2	245	81.7	245	82.3	265	115.5
52	94	12.6	114	20.2	124	24	144	31.4	154	34.7	164	39.4	174	44.3	194	53.6	194	54.4	204	59	214	63.8	224	69.6	244	81.1	244	81.7	264	114.8
54	93	12.3	113	19.8	123	23.6	143	30.9	153	34.3	163	38.9	173	43.8	193	53.1	193	53.9	203	58.4	213	63.2	223	69	243	80.4	243	81.1	263	114
56	92	12.1	112	19.4	122	23.2	142	30.5	152	33.8	162	38.5	172	43.3	192	52.6	192	53.4	202	57.9	212	62.7	222	68.5	242	79.8	242	80.5	262	113
58	91	11.8	111	19	121	22.8	141	30.1	151	33.4	161	38	171	42.8	191	52.1	191	52.8	201	57.4	211	62.1	221	67.9	241	79.2	241	79.9	261	112.5
60	90	11.5	110	18.7	120	22.5	140	29.7	150	32.9	160	37.5	170	42.3	190	51.5	190	52.3	200	56.8	210	61.5	220	67.3	240	78.6	240	79.3	260	111.8
62	-	-	1	-	119	22.1	139	29.3	149	32.5	159	37	169	41.8	189	51	189	51.8	199	56.3	209	60.9	219	66.7	239	78	239	78.6	259	111
64	-	-	1	-	118	21.7	138	28.8	148	32	158	36.6	168	41.3	188	50.5	188	51.3	198	55.8	208	60.4	218	66.1	238	77.3	238	78	258	110.3
66	-	-	ı	-	117	21.3	137	28.4	147	31.6	157	36.1	167	40.8	187	50	187	50.8	197	55.2	207	59.8	217	65.5	237	76.7	237	77.4	257	109.5
68	-	-	•	-	116	20.9	136	28	146	31.2	156	35.7	166	40.4	186	49.5	186	50.3	196	54.7	206	59.2	216	65	236	76.1	236	76.8	256	108.8
70	-	-	•	-	115	20.5	135	27.6	145	30.7	155	35.2	165	39.9	185	49	185	49.8	195	54.2	205	58.7	215	64.4	235	75.5	235	76.2	255	108.1
72	-	-	-	-	114	20.2	134	27.2	144	30.3	154	34.7	164	39.4	184	48.4	184	49.3	194	53.6	204	58.1	214	63.8	234	74.9	234	75.6	254	107.3
74	-	-	-	-	113	19.8	133	26.8	143	29.9	153	34.3	163	38.9	183	47.9	183	48.8	193	53.1	203	57.6	213	63.2	233	74.3	233	75	253	106.6
76	-	-	-	-	112	19.4	132	26.3	142	29.4	152	33.8	162	38.5	182	47.4	182	48.3	192	52.6	202	57	212	62.7	232	73.7	232	74.4	252	105.9
78	-	-	-	-	111	19	131	25.9	141	29	151	33.4	161	38	181	46.9	181	47.8	191	52.1	201	56.5	211	62.1	231	73.1	231	73.8	251	105.1
80	-	-	ı	-	110	18.7	130	25.5	140	28.6	150	32.9	160	37.5	180	46.4	180	47.2	190	51.5	200	55.9	210	61.5	230	72.5	230	73.2	250	104.4
82	-	-	-	-	-	-	-	-	139	28.2	149	32.5	159	37	179	45.9	179	46.7	189	51	199	55.4	209	60.9	229	71.9	229	72.6	249	103.7
84	-	-	-	-	-	-	-	-	138	27.8	148	32	158	36.6	178	45.4	178	46.2	188	50.5	198	54.8	208	60.4	228	71.2	228	72	248	103
86	-	-	•	-	-	-	-	-	137	27.3	147	31.6	157	36.1	177	44.9	177	45.7	187	50	197	54.3	207	59.8	227	70.6	227	71.4	247	102.2
88	-	-	•	-	-	-	-	-	136	26.9	146	31.2	156	35.7	176	44.4	176	45.3	186	49.5	196	53.7	206	59.2	226	70	226	70.8	246	101.5
90	-	-	-	-	-	-	-	-	135	26.5	145	30.7	155	35.2	175	43.9	175	44.8	185	49	195	53.2	205	58.7	225	69.5	225	70.2	245	100.8
92	-	-	ı	-	-	-	-	-	134	26.1	144	30.3	154	34.7	174	43.4	174	44.3	184	48.4	194	52.6	204	58.1	224	68.9	224	69.6	244	100.1
94	-	-	-	-	-	-	-	-	133	25.7	143	29.9	153	34.3	173	42.9	173	43.8	183	47.9	193	52.1	203	57.6	223	68.3	223	69	243	99.3

Page 77 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

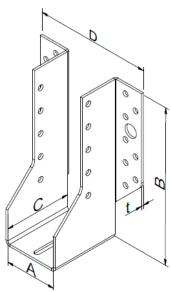
96 132 253 142 284 152 33.8 172 42.4 172 43.3 182 47.4 192 51.6 202 57 222 67.7 222 68.5 242 98.6 88	96									132	25.3	142	29.4	152	22.0	172	42.4	172	43.3	100	17 1	102	516	202	57	222	67.7	222	68.5	242	98.6
100		-	-	-	-	-	-	-	-																						
102		-	-	-	-		-	-	-																						
106		-	-	-	-		-	-	-	130	24.0	140	20.0	150	32.9	170	41.5						50.5								
106 - - - - - - - - 167 40.8 177 44.9 - 196 53.7 216 64.2 217 65.5 237 95.1 110 - - - - - - - 166 40.4 76 44.4 - 196 53.7 216 64.2 216 65.3 215 63.6 215 64.4 235 93.7 112 - - - - - 164 39.4 174 43.4 - 194 52.6 214 63.2 243 93.9 114 -<		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-						-								
108 -		-	-	-	-		-	-	-	-	-	-	-	-	-		-					-	-								
110 -			_				-								-		_					-									
1112 -		_	_	_	_	_	_	_	_	_	_	_	_	_	_		_					_	_								
114 - - - - - - - 163 38.9 173 42.9 - 193 52.1 213 62.4 213 63.2 233 92.3 116 - - - - - - - - 192 51.6 212 61.8 212 62.7 232 91.6 118 - - - - - - - - - 161 38 171 41.9 - 191 51 211 61.3 211 62.1 230 90.9 120 - - - - - - - 190 50.5 210 60.7 20 60.9 - - 200 60.9 - - 200 60.9 - - 200 60.9 - - 200 60.9 - - 200 60.9 - -		_	_	_	_	_	_	_	_	_	_	_	_	_	_		_					-	_								
116 -		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_						_								
118 - - - - - - - 161 38 171 41.9 - 191 51 211 61.3 211 62.1 231 90.9 120 - <t< td=""><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					-	-								1
120 -		-	-	-	-	-	-	-	-	-	-	-	_	_	-	-	-					-	-								
122 -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					-	-								
124 -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	159		-	-	-	-	-	-	-	-			-	-
126 -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	158	36.6	-	-	-	-	-	-	-	-	208	60.4	-	-
128		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	157	36.1	-	-	-	-	-	-	-	-			-	-
132 -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	156	35.7	-	-	-	-	-	-	-	-	206	59.2	-	-
134 -	130	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	155	35.2	-	-	-	-	-	-	-	-	205	58.7	-	-
136 -	132	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	154	34.7	-	-	-	-	-	-	-	-	204	58.1	-	-
138 -	134	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	153	34.3	-	-	1	-	-	-	-	-	203	57.6	-	-
140 -	136	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	152	33.8	-	-	-	-	-	-	-	-	202	57	-	-
142 -	138	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	151	33.4	-	-	-	-	-	-	-	-	201	56.5	-	-
144 -	140	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	150	32.9	-	-	-	-	-	-	-	-	200	55.9	-	-
146 -	142	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	199	55.4	-	-
148 -	144	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	198	54.8	-	-
150 -	146	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	197	54.3	-	-
152 -	148		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	196	53.7	_	-
154 -<	150	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	195	53.2	-	-
156 -<	152	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	194	52.6	-	-
158	154	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	193	52.1	-	-
	156	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	192	51.6	-	-
160	158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	191	51	-	-
	160	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	190	50.5	-	-

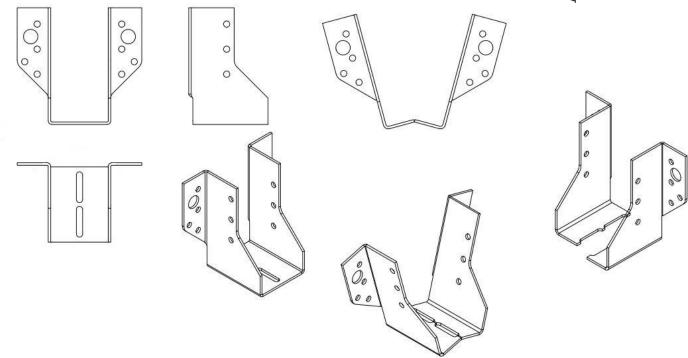
In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

$k_{\text{H,2}}$ for BSS - Full nailing - F2 $\,$

Blank	Total number of nails in the header	k _{H2}
	Full nailing	Full nailing
240	16	11
280	20	18.2
300	20	18.2
340	22	21.4
360	22	21.4
380	26	31.9
400	26	31.9
440	28	36.2
440*	26	31.9
460	28	36.2
480	32	49.9
500	32	49.9
540	34	57.1
540*	32	49.9
580	32	72.1

D9 DJH Joist hanger


Product Name	Material reference acc. to clause II-1	Alternative Names
DJH-Z	Steel ref 4	-
DJH	Steel ref 1	-
DJH-S	Steel ref 2	-


Dimensions

		Dimor	nsions [mml				Но	les		
Models		Dilliel	ן פווטונו				Hea	der		J	oist
	Α	В	С	D	t	Qty	Size	Qty	Size	Qty	Size
DJH92-46Z	46	92	60	28	2	8	Ø5	2	Ø11,5	6	Ø5
DJH137-46Z	46	137	60	28	2	16	Ø5	2	Ø11,5	10	Ø5
DJH167-46Z	46	167	60	28	2	18	Ø5	4	Ø11,5	12	Ø5

The joist hanger is divisible before installation when timber width is wider than 46 mm. Please refer to Annex B for installation details.

The accepted timber joist width for DJH hangers is from 46 mm to 160 mm.

Characteristic capacity for DJH - Full nailing - beam to beam

		Cł	naracteristic	values [kN]	- C24 timbe	er - Full naili	ing - Beam t	o beam		
Reference	Faste quan		R	1,k	R	2,k	R	3,k	R	4,k
	Header Joist		CSA5.0x35Z	CSA5.0x40Z	CSA5.0x35Z	CSA5.0x40Z	CSA5.0x35Z	CSA5.0x40Z	CSA5.0x35Z	CSA5.0x40Z
DJH92-46Z	8	6	11,9	13,5	10,3	11,7	1,8	2	10,1	11,5
DJH137-46Z	16	10	19,9	22,5	18,7	21,2	4,4	5	16,9	19,1
DJH167-46Z	18	12	23,9	27	22,3	25,4	5	5,6	20,3	23

Capacities are valid for joist width from 45 mm to 160 mm.

Characteristic capacity for DJH – Partial nailing – beam to beam

		CI	haracteristic	values [kN]	- C24 timbe	r - Full nailir	ng - Beam to	beam		
Reference	Fastei quan		R	11,k	R	2,k	R	3,k	R	4,k
	Header	Joist	CSA5.0x35Z	CSA5.0x40Z	CSA5.0x35Z	CSA5.0x40Z	CSA5.0x35Z	CSA5.0x40Z	CSA5.0x35Z	CSA5.0x40Z
DJH92-46Z	6	3	6	6,8	5,5	6,3	1,5	1,7	5,1	5,7
DJH137-46Z	10	6	11,9	13,5	11,2	12,7	2,9	3,3	10,1	11,5
DJH167-46Z	12	6	11,9 13,5		11,6	13,1	3,4	3,9	10,1	11,5

Capacities are valid for joist width from 45 mm to 160 mm.

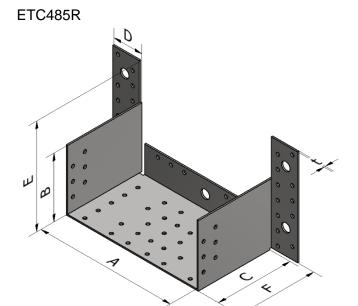
Characteristic capacity for DJH - Large connector screws SSH - beam to beam

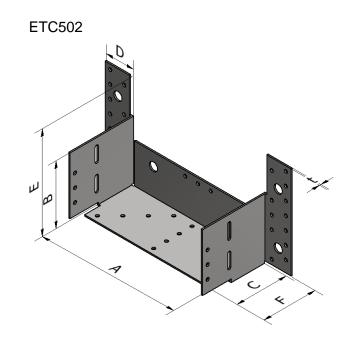
		Charact	eristi	c values	[kN] - C24 t	imber - Larç	ge connecto	r screws - B	eam to bea	m		
		Faste	ners				В		В		D	
Reference	Н	leader	Joist		K	1,k	K	2,k	K	3,k	R _{4,k}	
	Qty	Туре	Qty	Туре	SSH10.0x40	SSH10.0x50	SSH10.0x40	SSH10.0x50	SSH10.0x40	SSH10.0x50	SSH10.0x	
DJH92-46Z	2	SSH10.0	6	CSA-Z	5,8	7,9	5,8	7,7	2,5	3,4	5	
DJH137-46Z	2	SSH10.0	10	CSA-Z	5,8	8	5,8	8	1,2	1,6	5	
DJH167-46Z	4	SSH10.0	12	CSA-Z	10,2	14,1	10,2	14,1	2	2,7	10	

CSA-Z can be CSA5.0x35Z or CSA5.0x40Z.

Capacities are valid for joist width from 45 mm to 160 mm.

Characteristic capacity for DJH - Timber to rigid support


				Characte	ristic values [kN] - C24 timk	er - Timber to	rigid				
		Faste	eners		D1	1 k	D	2,k	R	٠ ل ـ	R4,k	
Reference	F	leader	Joist		- R1,k		N2	-, K	N.),K	K4,K	
	Qty	Туре	Qty	Туре	CSA5.0x35Z	CSA5.0x40Z	CSA5.0x35Z	CSA5.0x40Z	CSA5.0x35Z	CSA5.0x40Z	CSA5.0xZ	
DJH92-46Z	2	Ø10 bolt	6	CSA-Z	9.4	12.6	9.4	12.6	4.5	6	5	
DJH137-46Z	2	Ø10 bolt	10	CSA-Z	14.2	14.2	14.2	14.2	5.7	7.7	5	
DJH167-46Z	4	Ø10 bolt	12 CSA-Z		18.9	22.7	18.9	22.7	17.9	24.4	10	

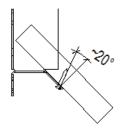

D10 ETC Truss connector

Product Name	Material reference acc. to clause II-1	Alternative Names
ETC	Steel ref 1 - Steel ref 2	-

Dimensions

										Н	oles		
Model			Dimens	ions [m	ım]				н	eader		Suppo mem	
	Α	В	С	D	E	F	t	Qty	Size	Qty	Size	Qty	Size
ETC485R	195	90	110	42	145	112	2	30	Ø5	5	Ø13	43	Ø5
ETC502	206	93	78	41	148	80	2	27	Ø5	6	Ø13	18	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	±1.0	1	-				-	1

Characteristic capacity for ETC - Full nailing - F1, F2 - timber to timber


	•	F	astener	s - CN	A4.0x35								
Model	Не	ader	Hip			Ja	ack	Chara	cterist	іс сара	acity	[kN] -	C24
	Timber	Rigid	Type	Side	Bottom	Side	Bottom		R _{1,k}			R _{2,k}	
	Tillibei	support	Туре	Side	Bottom	Side	Bottom	Hip	Jack	Total	Hip	Jack	Max
ETC485R(2)	30	4 Ø12	2 Plys	3	7	6	5	16.8	5.6	22.4	5.7	5.9	3.8
ETC485R ⁽¹⁾	20	-	2 Plys	3	7	6	5	-	-	-	5.7	5.9	3.8
ETC502 ^(a)	25	ı	1 Ply	3	4	0	4	4.92	6.56	16.4	5.6	1.2	4.4
ETC502(b)	23	-	1 Ply	3	4	0	4	4.32	5.76	14.4	5.6	1.2	3.3
ETC502(c)	15	-	1 Ply	3	4	0	4	3.42	4.52	11.4	5.6	1.2	3.3
ETC502 ^(d)	27	4 Ø12	1 Ply	3	4	0	4	9.28	4.64	23.2	5.6	1.2	4.4

- (2) Header and Joist allow full nailing so Header > 147 mm and Joist > 95mm
- (1) Header and Joist ≥ 97 mm
- (a) Header and Joist allow full nailing so Header > 195 mm and Joist > 95 mm
- (b) Header and Joist allow full nailing so Header > 145 mm and Joist > 95 mm
- (c) Header and Joist allow full nailing so Header ≥ 97 mm and Joist > 95 mm
- (d) Header and Joist allow full nailing so Header > 200 mm and Joist > 95 mm

For uplift value : $F_k = min (Hip + Jack ; Max)$

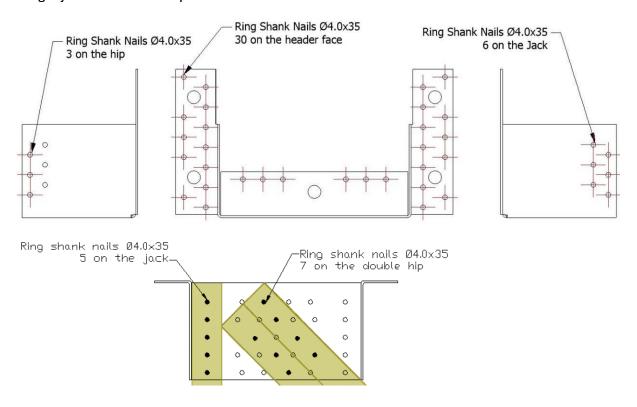
It has to be checked, that the header has a sufficient stiffness, especially the torsion and the resistance for *tension* perpendicular to the grain. The width of the header has to fullfill the need.

The nails in the hips are placed between 0° and $\sim 20^{\circ}$ - see picture:

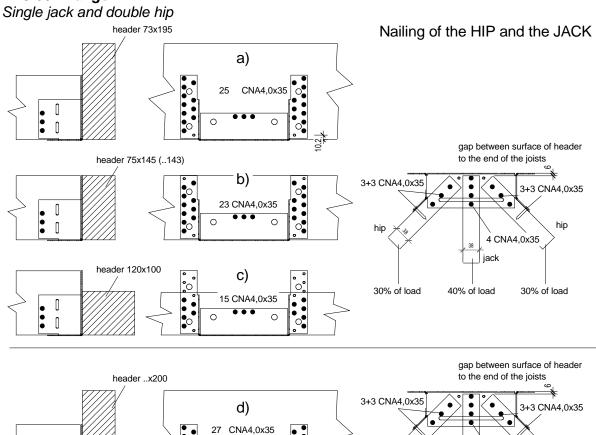
Downward and uplift characteristic capacities with SSH12.0x60

DOWIIWai	<u>u anu upint</u>	Charac	teristic	capacines	with S	<u>ЭП 12.(</u>	JXOU						
			Timber s	sections and fa	steners						: capaci nm - Tii		
Model	Header		Jack	(R _{1,k}			R _{2,k}				
	SSH12.0x60	.0x60 No. of Min. height CNA4.0x35		CNA4.0x35	No. of plies	Min. height	CNA4.0x35	Jack	Hip	Total	Jack	Hip	Max.
ETC502 ^(e)	6	1 97 4			1	97	12	3,0	6,1	15,1	1,3	2,5	6,3

⁽e) Header and Joist allow full nailing so Header > 145 mm and Joist > 95 mm


Load share is as described below:

Configuration "2 hips + 1 jack": 20% load on jack and 40% on each hip.


Nail pattern

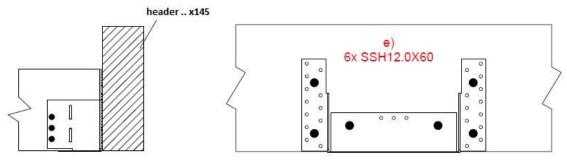
ETC485R Hangers

Single jack and double hips

ETC 502 Hanger

4 CNA4,0x35

40% of load

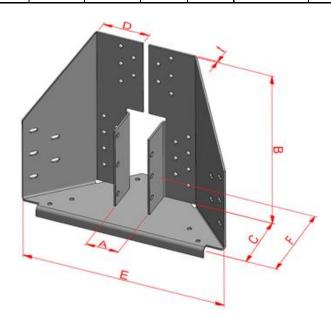

jack

20% of load

40% of load

or 4 bolts M12

Page 84 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07



D11 ETC392 Truss Connector

Product Name	Material reference acc. to clause II-1	Alternative Names
ETC392	Steel ref 1 - Steel ref 2	-

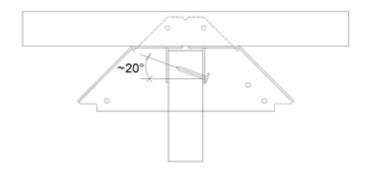
Dimensions

			Dim	ensions	[mm]				Но	les	
Model			Dilli	ICHSIOHS	[IIIIII]			Head	der	Supported	l member
	A B C D E F t							Qty	Size	Qty	Size
ETC392	38	195	68	54	239	102	2	26	Ø5	20	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	±1.0	-	-	-	-	-

Characteristic capacity for ETC - Full nailing - F1, F2 - timber to timber - 1 jack + 2 hips

			Fast	eners -	CNA4.	0x35				Chara	cteristic Timbe		ity [kN]	
Model		Heade	er	Hip			Jack		R _{1,k}			R _{2,k}		
	Туре	Face	Bottom	Туре	Side	Bottom	Туре	Side	Hip	Jack	Total	Hip	Jack	Total
ETC392	1 Ply	24	2	1 Ply	5	2	1 Ply	6	8.78	4.39	21.96	6.64	3.32	16.60

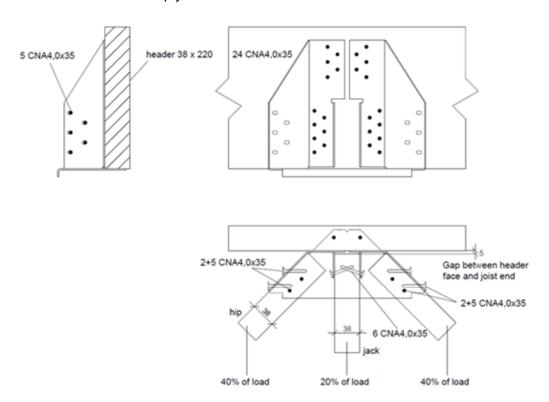
⁽¹⁾ Header and Joist depth ≥ 97 mm

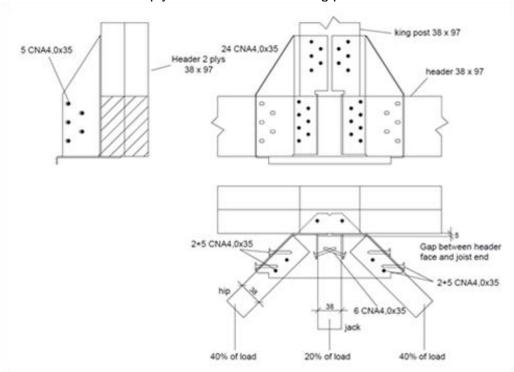

All joists members shall be installed ensuring a symmetrical configuration.

Spacings and edge distances shall be checked for the group of 10 nails located in the upper part of the hanger depending on the header depth and the vertical member dimension.

The resistance of the supporting and supported members shall be checked, in particular the *tension* perpendicular to the grain.

⁽²⁾ Header member can be made of 2 plies 38 x 220 mm. When the header is composed of 2 plies of 38x97 mm, it requires the installation of a 1 ply vertical member (king post) of a minimum width of 97 mm, directly above the header.


Page 86 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07 The nails in the central joist member are installed at approximately 20° - See *image below*.

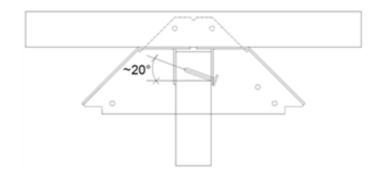

Nail pattern *ETC392*

Nailing of the hips and jack - 1 jack + 2 hips

• Header is made of 2 plys of 38 x 220 mm.

• Header is made of 2 plys of 38 x 97 mm + a king post of 38 x 97 mm.

Characteristic capacity for ETC - Full nailing - F1, F2 - timber to timber - 1 jack + 1 hip

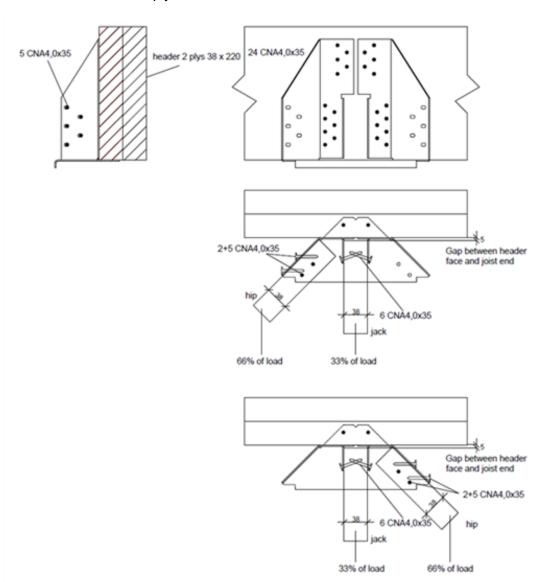

			Faste	eners -	CNA4.	0x35				Charac	teristic Timbe		ity [kN]
Model		Heade	er	Hip			Jack			D			D	
Model	Tyma	Face	Dattem	Tyma	Cido	Dattem	Tyma	Cido		R _{1,k}			R _{2,k}	
	Type	race	Bottom	Type	Side	Bottom	Type	Side	Hip	Jack	Total	Hip	Jack	Total
ETC392	1 Ply	24	2	1 Ply	5	2	1 Ply	6	10.92	5.46	16.39	6.45	3.25	9.70

⁽¹⁾ Header and Joist height ≥ 97 mm

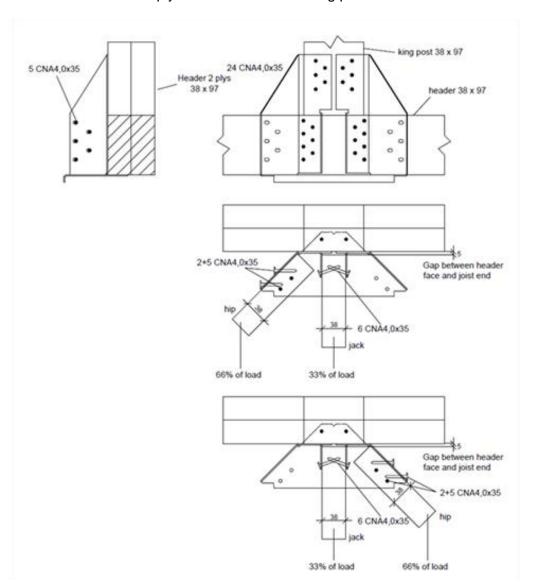
Spacings and edge distances shall be checked for the group of 10 nails located in the upper part of the hanger depending on the header depth and the vertical member dimension.

The resistance of the supporting and supported members shall be checked, in particular the *tension* perpendicular to the grain.

The nails in the central joist member are installed at approximately 20° - See image below.



⁽²⁾ Header member can be made of 2 plies 38 x 220 mm. When the header is composed of 2 plies of 38x97 mm, it requires the installation of a 1 ply vertical member (king post) of minimum width of 97 mm, directly above the header.


Nail pattern *ETC*392

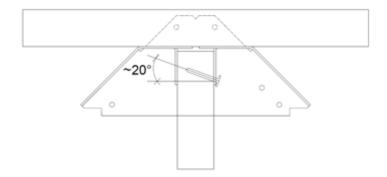
Nailing of the hips and jack - 1 jack + 1 hip

• Header is made of 2 plys of 38 x 220 mm.

• Header is made of 2 plys of 38 x 97 mm + a king post of 38 x 97 mm.

Characteristic capacity for ETC - Full nailing - F1, F2 - timber to timber - 2 hips

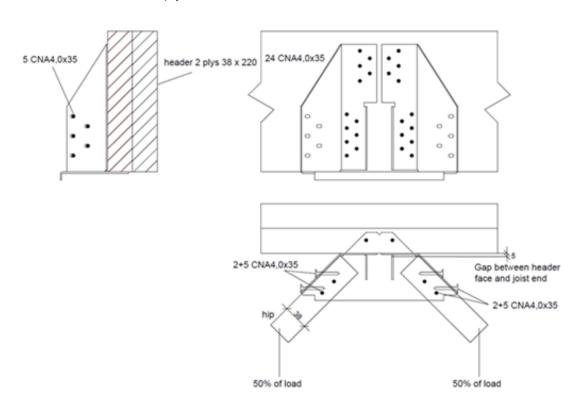
ilai dotoi				eners -		·						c capacity [kN] er C24			
Model		Heade	er		Hip		Ja	ck		D			$R_{2,k}$		
wodei	Time	Face	Bottom	Time	Side	Bottom	Tyma	Side		R _{1,k}			K _{2,k}		
	Туре	гасе	Бошош	Туре	Side	Бошош	Туре	Side	Hip	Jack	Total	Hip	Jack	Total	
ETC392	1 Ply	24	2	1 Ply	5	2	-	-	9.54	-	19.09	5.80	-	11.61	

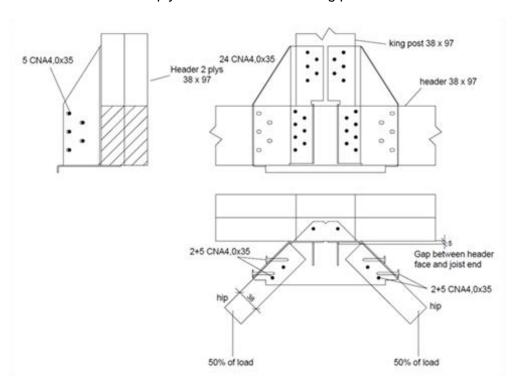

⁽¹⁾ Header and Joist height ≥ 97 mm

Spacings and edge distances shall be checked for the group of 10 nails located in the upper part of the hanger depending on the header depth and the vertical member dimension.

The resistance of the supporting and supported members shall be checked, in particular the *tension* perpendicular to the grain.

⁽²⁾ Header member can be made of 2 plies of 38 x 220 mm. When the header is composed of 2 plies of 38x97 mm, it requires the installation of a 1 ply vertical member (king post) of minimum width of 97 mm, directly above the header.

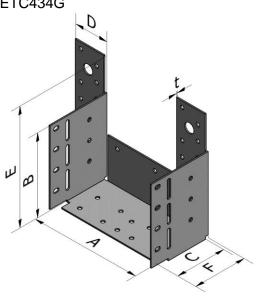

Page 90 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07 The nails in the central joist member are installed at approximately 20° - See image below.


Nail pattern *ETC392*

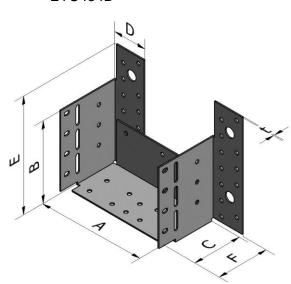
Nailing of the hips and jack - 2 hips

• Header is made of 2 plys of 38 x 220 mm.

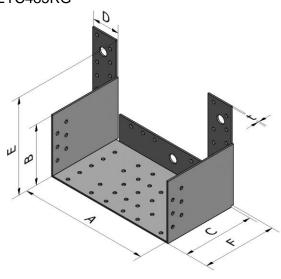
• Header is made of 2 plys of 38 x 97 mm + a king post of 38 x 97 mm.

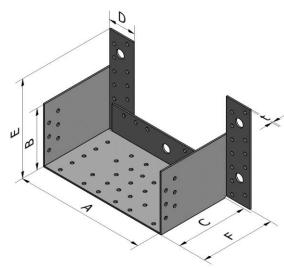

D12 ETC G/D Truss Connector

Product Name	Material reference acc. to clause II-1	Alternative Names
ETC G/D	Steel ref 1 - Steel ref 2	-


Dimensions

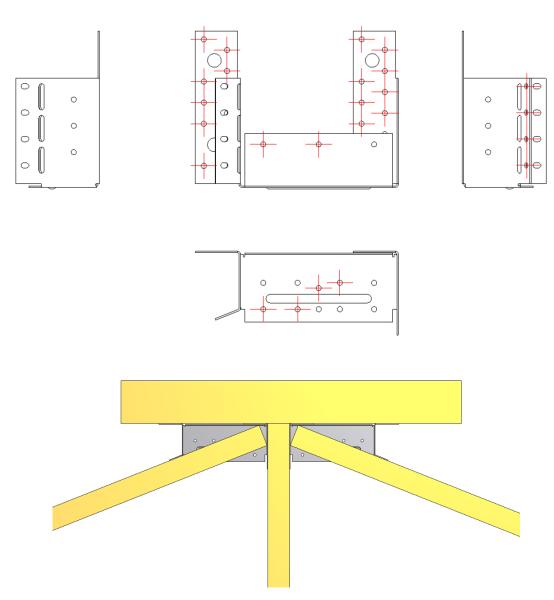
			Dimo	nsions	[mm]						Н	oles			
Model			Dillie	:11510115	[111111]			Header Sur				upported member			
	Α	В	С	D	E	F	t	Qty	Size	Qty	Size	Qty	Size	Qty	Size
ETC434D	140	102	77.5	42	147	79.5	1.5	37	Ø5	3	Ø13	16	Ø5	8	Ø5x7.5
ETC434G	140	102	77.5	42	147	79.5	1.5	37	Ø5	3	Ø13	16	Ø5	8	Ø5x7.5
ETC485D	195	90	110	42	145	112	2	30	Ø5	5	Ø13	43	Ø5	-	-
ETC485G	195	90	110	42	145	112	2	30	Ø5	5	Ø13	43	Ø5	-	-
Permitted deviation	ı	-	±1.0	±1.0	±1.0	±1.0	-	-	-			-	-		




ETC434D

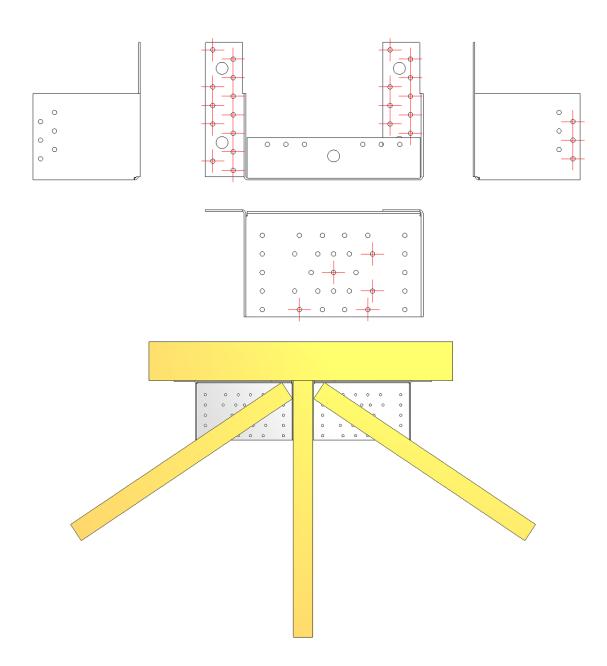
ETC485RG

ETC485RD



Characteristic capacity for ETC G/D - Full nailing - F1 - timber to timber

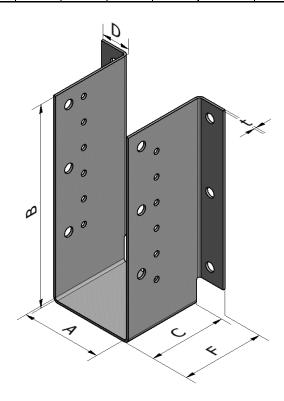
		Faste	ners -	CNA4	.0x35	Fasteners - CNA4.0x35								
Model		Header			Hip			R _{1,k}						
	Timber	Rigid support	Туре	Side	Bottom	Side	Bottom	Hip	Jack	Total				
ETC434G + ETC434D	40	6 Ø12	1 Ply	4	10	6	0	6.6	3.3	16.5				
ETC485RG + ETC485RD	42	6 Ø12	1 Ply 3 8 6 0			7	3.5	17.5						


Nail pattern ETC434G + ETC434D Hangers

Single Jack and two single hips For ETC434D, it is a mirror of the nail pattern presented just below.

ETC485RG + ETC485RD Hangers

Single Jack and two single hips For ETC485RD it is a mirror of the nail pattern presented just below.



D13 GBE Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GBE	Steel ref 1 - Steel ref 2 - Steel ref 3	-

Dimensions

		Dimon	oiono l					Hole	:S			
Blank		Dimen	sions [mmj		Hea	der	Joist				
	Α	В	С	D	F	t	Qty	size	Qty	size	Qty	size
600	75-225	(600-A)/2	145	54	156	4	4	Ø18	6	Ø11	4	Ø18
750	75-225	(750-A)/2	145	54	156	4	4	Ø18	8	Ø11	4	Ø18
900	75-225	(900-A)/2	145	54	156	4	6	Ø18	12	Ø11	6	Ø18
1050	75-225	(1050-A)/2	145	54	156	4	6	Ø18	14	Ø11	6	Ø18
1200	75-225	(1200-A)/2	145	54	156	4	8	Ø18	18	Ø11	8	Ø18
1350	75-225	(1350-A)/2	145	54	156	4	8	Ø18	20	Ø11	8	Ø18
1500	75-225	(1500-A)/2	145	54	156	4	10	Ø18	24	Ø11	10	Ø18
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Options:

- Holes for screws are optional
 The number and position of holes per flange can vary
 Bolts can be in class 4.6 to 10.9

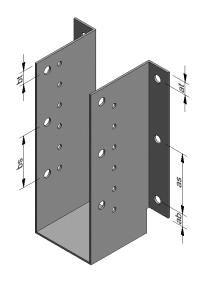
Parameters have to be used with equation in Annex C.

Parameters for Joist Hanger GBE

Standard GBE are as described in the table below:

Blank model	Qty of bolts/flange	Spacing of bolts on the header	Qty of bolts/joist	Spacing of bolts in the joist	Qty of screws in the joist	Spacing of screws in the joist	Y	Ϋ́s	k _{b.h}	а
600	2	122.5	2	90	3	48	0.332	0.325	0.70	60
750	2	197.5	2	165	4	48	0.542	0.395	0.70	60
900	3	136	3	120	6	48	0.530	0.516	0.85	60
1050	3	173.5	3	157.5	7	48	0.634	0.567	0.85	60
1200	4	140.5	4	130	9	48	0.646	0.652	0.95	60
1350	4	165.5	4	155	10	48	0.710	0.687	0.95	60
1500	5	143	5	135	12	48	0.726	0.745	0.95	60

For other cases, calculation is made using following parameters:

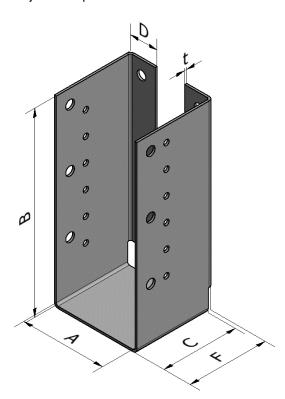

Qty bolts/flange	k _{b.h}
2	0,7
3	0,85
4	0,95
5	0,95

The table below gives values of γ depending of the number of bolts on the joist and the spacing of these bolts.

Qty of bolts in		γ factor depending of the spacing bolt joist [mm]										
the joist	90	100	120	140	160	180	200	250	300			
2	0,33	0,36	0,42	0,48	0,53	0,58	0,62	0,70	0,76			
3	0,42	0,46	0,53	0,59	0,64	0,68	0,72	0,79	0,84			
4	0,51	0,55	0,62	0,67	0,72	0,76	0,79	0,85	0,89			
5	0,58	0,62	0,68	0,74	0,78	0,81	0,84	0,89	0,92			

Additional information:

- The minimum number of bolts per flange is equal to 2
- The distance of the holes to the top of the flange shall fulfill : 28 mm $\leq at \leq$ 50 mm
- The distance of the holes to the bottom of the flange shall fulfill : 28 mm $\leq ab \leq$ 50 mm
- The distance of the holes to the top of the side shall fulfill : 28 mm $\leq bt \leq$ 50 mm
- The number of bolts on the joist and per flange should be the same
- The bolt on the joist must be inserted starting from the lowest and going up
- The same number of bolts must be inserted in each flange and positioned symmetrically
- Minimum spacing between bolts on the header "as" is equal to 120 mm
- Minimum spacing between bolts on the joist "bs" is equal to 60 mm


D14 GBI Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GBI	Steel ref 1 - Steel ref 2	-

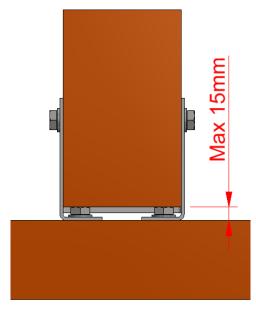
Dimensions

		Dimo	nsions	[mm]		Holes						
Blank		Dillie	11210112	Limin			Hea	der	Joist			
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
600	120-225	(600-A)/2	145	54	156	4	4	Ø18	6	Ø11	4	Ø18
750	120-225	(750-A)/2	145	54	156	4	4	Ø18	8	Ø11	4	Ø18
900	120-225	(900-A)/2	145	54	156	4	6	Ø18	12	Ø11	6	Ø18
1050	120-225	(1050-A)/2	145	54	156	4	6	Ø18	14	Ø11	6	Ø18
1200	120-225	(1200-A)/2	145	54	156	4	8	Ø18	18	Ø11	8	Ø18
1350	120-225	(1350-A)/2	145	54	156	4	8	Ø18	20	Ø11	8	Ø18
1500	120-225	(1500-A)/2	145	54	156	4	10	Ø18	24	Ø11	10	Ø18
Permitted deviation	-	-	±1.0	±1.0	±1.0	ı	-	-	-	-	-	-

Minimum spacing between bolts on the header is equal to 120 mm Minimum spacing between bolts on the joist is equal to 60 mm

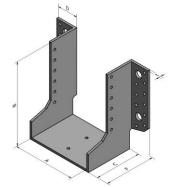
Options:

- Holes for screws are optional The number and position of holes per flange can vary.
- Bolts can be in class 4.6 to 10.9


Page 98 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

Parameters have to be used with equation in Annex C

Parameters for Joist Hanger GBI


Blank model	Qty Bolt flange	Spacing on header	Qty of bolt joist	Spacing bolt joist	Qty screws Joist	Spacing Screw joist	γ	γs	k _{b.h}	а
600	2	122.5	2	90	3	48	0.332	0.325	0.7	60
750	2	197.5	2	165	4	48	0.542	0.395	0.7	60
900	3	136	3	120	6	48	0.53	0.516	0.85	60
1050	3	173.5	3	157.5	7	48	0.634	0.567	0.85	60
1200	4	140.5	4	130	9	48	0.646	0.652	0.95	60
1350	4	165.5	4	155	10	48	0.71	0.687	0.95	60
1500	5	143	5	135	12	48	0.726	0.745	0.95	60

Maximum distance to the end of the joist for internal flange version.

D15 GLE Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GLE	Steel ref 1 - Steel ref 2	-

Dimensions

									Н	loles		
Blank		Dime	nsions	[mm]				Hea	der		Jo	ist
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
300/2.5X	32-110	(300-A)/2	90	38.5	95	2.5	12	Ø5	2	Ø14	7	Ø5
340/2.5X	32-110	(340-A)/2	90	38.5	95	2.5	16	Ø5	2	Ø14	9	Ø5
380/2.5X	32-110	(380-A)/2	90	38.5	95	2.5	20	Ø5	2	Ø14	11	Ø5
440/2.5X	32-160	(440-A)/2	90	38.5	95	2.5	20	Ø5	4	Ø14	12	Ø5
500/2.5X	32-160	(500-A)/2	90	38.5	95	2.5	26	Ø5	4	Ø14	15	Ø5
540/2.5X	32-160	(540-A)/2	90	38.5	95	2.5	30	Ø5	4	Ø14	17	Ø5
600/2.5X	32-160	(600-A)/2	90	38.5	95	2.5	36	Ø5	4	Ø14	20	Ø5
660/2.5X	32-160	(660-A)/2	90	38.5	95	2.5	40	Ø5	6	Ø14	23	Ø5
720/2.5X	32-160	(720-A)/2	90	38.5	95	2.5	46	Ø5	6	Ø14	26	Ø5
780/2.5X	32-160	(780-A)/2	90	38.5	95	2.5	48	Ø5	6	Ø14	29	Ø5
840/2.5X	32-160	(840-A)/2	90	38.5	95	2.5	54	Ø5	6	Ø14	32	Ø5
900/2.5X	32-160	(900-A)/2	90	38.5	95	2.5	60	Ø5	6	Ø14	35	Ø5
960/2.5X	32-160	(960-A)/2	90	38.5	95	2.5	64	Ø5	8	Ø14	38	Ø5
1020/2.5X	32-160	(1020-A)/2	90	38.5	95	2.5	70	Ø5	8	Ø14	41	Ø5
300/4X	32-110	(300-A)/2	90	40	98	4	12	Ø5	2	Ø14	7	Ø5
340/4X	32-110	(340-A)/2	90	40	98	4	16	Ø5	2	Ø14	9	Ø5
380/4X	32-110	(380-A)/2	90	40	98	4	20	Ø5	2	Ø14	11	Ø5
440/4X	32-160	(440-A)/2	90	40	98	4	20	Ø5	4	Ø14	12	Ø5
500/4X	32-160	(500-A)/2	90	40	98	4	26	Ø5	4	Ø14	15	Ø5
540/4X	32-160	(540-A)/2	90	40	98	4	30	Ø5	4	Ø14	17	Ø5
600/4X	32-160	(600-A)/2	90	40	98	4	36	Ø5	4	Ø14	20	Ø5
660/4X	32-160	(660-A)/2	90	40	98	4	40	Ø5	6	Ø14	23	Ø5
720/4X	32-160	(720-A)/2	90	40	98	4	46	Ø5	6	Ø14	26	Ø5
780/4X	32-160	(780-A)/2	90	40	98	4	48	Ø5	6	Ø14	29	Ø5
840/4X	32-160	(840-A)/2	90	40	98	4	54	Ø5	6	Ø14	32	Ø5
900/4X	32-160	(900-A)/2	90	40	98	4	60	Ø5	6	Ø14	35	Ø5
960/4X	32-160	(960-A)/2	90	40	98	4	64	Ø5	8	Ø14	38	Ø5
1020/4X	32-160	(1020-A)/2	90	40	98	4	70	Ø5	8	Ø14	41	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Parameters have to be used with equation in Annex C

 $k_{\text{H},1}$ for Joist Hanger GLE and GLI - Full nailing - F1

						F	ull nailin	g						
								Model						
		00		40		80		40		00		40		00
	n _H 12	n _J 7	п н 16	n J 9	n _H 20	nյ 11	n _H 20	n յ 12	n _н 26	n յ 15	n _H 30	n J 17	n _н 36	n J 20
Α	В	kh,1	В	kh,1	В	kh,1	B	kh,1	В	kh,1	В	kh,1	В	kh,1
32	134	24,2	154	33,1	174	43,3	204	55,8	234	78,4	254	94,3	284	121,7
34 36	133 132	23,9 23,5	153 152	32,7 32,3	173 172	42,9 42,4	203 202	55,3 54,8	233 232	77,8 77,1	253 252	93,6 92,9	283 282	120,8 120,0
38	131	23,2	151	31,9	171	41,9	202	54,3	231	76,5	252	92,9	281	119,2
40	130	22,9	150	31,5	170	41,4	200	53,8	230	75,9	250	91,5	280	118,4
42 44	129	22,5 22,2	149 148	31,1 30,7	169	40,9	199	53,3 52,8	229 228	75,3 74,7	249 248	90,8 90,1	279 278	117,6 116,8
46	128 127	21,9	147	30,7	168 167	40,4 39,9	198 197	52,6	227	74,7	240	89,4	277	115,6
48	126	21,6	146	29,9	166	39,5	196	51,8	226	73,4	246	88,7	276	115,1
50	125	21,3	145	29,5	165	39,0	195	51,3	225	72,8	245	88,0	275	114,3
52 54	124 123	20,9 20,6	144 143	29,1 28,7	164 163	38,5 38,0	194 193	50,8 50,3	224 223	72,2 71,6	244 243	87,3 86,6	274 273	113,5 112,7
56	122	20,3	142	28,3	162	37,6	192	49,8	222	70,9	242	85,9	272	111,9
58	121	20,0	141	27,9	161	37,1	191	49,3	221	70,3	241	85,3	271	111,1
60 62	120 119	19,7 19,3	140 139	27,5 27,1	160 159	36,6 36,1	190 189	48,8 48,3	220 219	69,7 69,1	240 239	84,6 83,9	270 269	110,3 109,5
64	118	19,3	138	26,7	158	35,7	188	46,3	218	68,5	239	83,2	268	109,5
66	117	18,7	137	26,3	157	35,2	187	47,3	217	67,9	237	82,5	267	107,9
68 70	116	18,4 18,1	136	25,9 25,5	156	34,7 34,3	186	46,9 46,4	216	67,3	236 235	81,8 81,1	266	107,1
70	115 114	17,8	135 134	25,5	155 154	34,3	185 184	45,9	215 214	66,7 66,1	235	80,5	265 264	106,3 105,5
74	113	17,5	133	24,7	153	33,4	183	45,4	213	65,5	233	79,8	263	104,7
76	112	17,1	132	24,4	152	32,9	182	44,9	212	64,9	232	79,1	262	103,9
78 80	111 110	16,8 16,5	131 130	24,0 23,6	151 150	32,5 32,0	181 180	44,4 43,9	211 210	64,3 63,7	231 230	78,4 77,7	261 260	103,1 102,3
82	109	16,2	129	23,2	149	31,5	179	43,5	209	63,1	229	77,1	259	101,6
84	108	15,9	128	22,8	148	31,1	178	43,0	208	62,5	228	76,4	258	100,8
86 88	107 106	15,6 15,3	127 126	22,5 22,1	147 146	30,6 30,2	177 176	42,5 42,0	207 206	61,9 61,3	227 226	75,7 75,1	257 256	100,0 99,2
90	105	15,0	125	21,7	145	29,8	175	41,6	205	60,7	225	74,4	255	98,4
92	104	14,7	124	21,3	144	29,3	174	41,1	204	60,1	224	73,7	254	97,6
94 96	103 102	14,4 14,1	123 122	21,0 20,6	143 142	28,9 28,4	173 172	40,6 40,1	203 202	59,5 58,9	223 222	73,1 72,4	253 252	96,9 96,1
98	102	13,8	121	20,0	141	28,0	171	39,7	202	58,3	221	71,7	252	95,3
100	100	13,5	120	19,9	140	27,6	170	39,2	200	57,7	220	71,1	250	94,6
102	99	13,3	119	19,5	139	27,1	169	38,7	199	57,2	219	70,4	249	93,8
104 106	98 97	13,0 12,7	118 117	19,2 18,8	138 137	26,7 26,3	168 167	38,3 37,8	198 197	56,6 56,0	218 217	69,8 69,1	248 247	93,0 92,3
108	96	12,4	116	18,4	136	25,9	166	37,3	196	55,4	216	68,5	246	91,5
110	95	12,1	115	18,1	135	25,4	165	36,9	195	54,8	215	67,8	245	90,7
112 114		-	-	-	-	-	164 163	36,4 35,9	194 193	54,3 53,7	214 213	67,2 66,5	244 243	90,0 89,2
116	-	-	-	-	-	-	162	35,5	192	53,1	212	65,9	242	88,5
118	-	-	-	-	-	-	161	35,0	191	52,6	211	65,2	241	87,7
120 122	:	-		-			160 159	34,6 34,1	190 189	52,0 51,4	210 209	64,6 63,9	240 239	87,0 86,2
124] -	-	-	-	-	-	158	33,7	188	50,9	208	63,3	238	85,5
126		-	-	-	-	-	157	33,2	187	50,3	207	62,7	237	84,7
128 130	:		-			-	156 155	32,8 32,3	186 185	49,7 49,2	206 205	62,0 61,4	236 235	84,0 83,2
132]					-	154	31,9	184	48,6	203	60,8	234	82,5
134		-	-	-	-	-	153	31,4	183	48,1	203	60,2	233	81,8
136 138		-	-		-	-	152 151	31,0 30,6	182 181	47,5 47,0	202 201	59,5 58,9	232 231	81,0 80,3
140	1					-	150	30,1	180	46,4	200	58,3	230	79,6
142	-	-	-	-	-	-	149	29,7	179	45,9	199	57,7	229	78,9
144	· ·	-	-	-	-	-	148	29,3	178	45,3	198	57,1	228	78,1
146 148		-	-	-	-	-	147 146	28,8 28,4	177 176	44,8 44,3	197 196	56,4 55,8	227 226	77,4 76,7
150] -	-	-	-	-	-	145	28,0	175	43,7	195	55,2	225	76,0
152		-	-	-	-	-	144	27,6	174	43,2	194	54,6	224	75,3
154 156						-	143 142	27,1 26,7	173 172	42,7 42,1	193 192	54,0 53,4	223 222	74,6 73,9
158]					-	141	26,3	171	41,6	191	52,8	221	73,2
160	-	-	-	-	-	-	140	25,9	170	41,1	190	52,2	220	72,5

In the case of intermediate width, $k_{H,1}$ can be calculated by linear interpolation.

$k_{\text{H},\text{1}}$ for Joist Hanger GLE and GLI - Full nailing - F1

						F	ull nailin	g						
							Blank	Model						
	n _H	60 n _J	n _H	20 n _J	n _H	80 n _J	n _H	40 nյ	n _H	00 n _J	n _H	060 n _J	n _H	020 n _J
	40	23	46	26	48	29	54	32	60	35	64	38	70	41
Α	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1
32 34	314 313	142,9 142,0	344 343	176,8 175,8	374 373	208,4 207,4	404 403	247,3 246,1	434 433	287,1 285,8	464 463	323,5 322,2	494 493	369,8 368,3
36	312	141,1	342	174,8	372	206,3	402	244,9	432	284,5	462	320,8	492	366,9
38	311	140,2	341	173,8	371	205,2	401	243,7	431	283,2	461	319,5	491	365,4
40 42	310 309	139,3 138,4	340 339	172,8 171,9	370 369	204,2 203,1	400 399	242,6 241,4	430 429	282,0 280,7	460 459	318,1 316,8	490 489	364,0 362,5
44	308	137,6	338	170,9	368	202,1	398	240,2	428	279,4	458	315,4	488	361,0
46	307	136,7	337	169,9	367	201,0	397	239,0	427	278,1	457	314,1	487	359,6
48 50	306 305	135,8 134,9	336 335	168,9 167,9	366 365	200,0 198,9	396 395	237,9 236,7	426 425	276,8 275,6	456 455	312,7 311,4	486 485	358,1 356,7
52	304	134,1	334	166,9	364	197,8	394	235,5	424	274,3	454	310,1	484	355,2
54 56	303 302	133,2 132,3	333 332	165,9	363 362	196,8	393 392	234,4 233,2	423 422	273,0 271,7	453 452	308,7 307,4	483 482	353,8
58	302	132,3	332	164,9 164,0	362	195,7 194,7	392	233,2	422	271,7	452 451	307,4	482	352,3 350,9
60	300	130,6	330	163,0	360	193,6	390	230,9	420	269,2	450	304,7	480	349,4
62	299	129,7	329	162,0	359	192,6	389	229,7	419	267,9	449	303,4	479	348,0
64 66	298 297	128,9 128,0	328 327	161,0 160,0	358 357	191,5 190,5	388 387	228,6 227.4	418 417	266,7 265,4	448 447	302,0 300,7	478 477	346,5 345,1
68	296	127,1	326	159,1	356	189,5	386	226,3	416	264,1	446	299,4	476	343,7
70 72	295 294	126,3 125,4	325 324	158,1 157,1	355 354	188,4 187,4	385 384	225,1 224,0	415 414	262,9 261,6	445 444	298,0 296,7	475 474	342,2 340,8
74	294	125,4	323	156.2	353	186,3	383	222,8	413	260.4	444	295,7	474	339.4
76	292	123,7	322	155,2	352	185,3	382	221,7	412	259,1	442	294,1	472	337,9
78	291	122,9	321	154,2	351	184,3	381	220,5	411 410	257,8	441 440	292,8	471 470	336,5
80 82	290 289	122,0 121,2	320 319	153,3 152,3	350 349	183,2 182,2	380 379	219,4 218,2	409	256,6 255,3	440	291,4 290,1	469	335,1 333,6
84	288	120,3	318	151,4	348	181,2	378	217,1	408	254,1	438	288,8	468	332,2
86	287	119,5	317	150,4	347	180,1	377	216,0	407	252,9	437	287,5	467	330,8
88 90	286 285	118,6 117,8	316 315	149,5 148,5	346 345	179,1 178,1	376 375	214,8 213,7	406 405	251,6 250,4	436 435	286,2 284,9	466 465	329,4 328,0
92	284	117,0	314	147,6	344	177,1	374	212,6	404	249,1	434	283,6	464	326,5
94	283	116,1	313	146,6	343	176,0	373	211,4	403	247,9	433	282,3	463	325,1
96 98	282 281	115,3 114,4	312 311	145,7 144,7	342 341	175,0 174,0	372 371	210,3 209,2	402 401	246,6 245,4	432 431	281,0 279,7	462 461	323,7 322.3
100	280	113,6	310	143,8	340	173,0	370	208,0	400	244,2	430	278,4	460	320,9
102 104	279 278	112,8	309 308	142,8	339 338	172,0	369 368	206,9	399 398	243,0 241,7	429 428	277,1	459 458	319,5 318,1
104	277	112,0 111,1	307	141,9 141,0	337	170,9 169,9	367	205,8 204,7	397	241,7	420	275,8 274,5	456	316,7
108	276	110,3	306	140,0	336	168,9	366	203,6	396	239,3	426	273,2	456	315,3
110 112	275	109,5	305	139,1	335	167,9	365	202,4	395	238,0	425	271,9	455	313,9
114	274 273	108,7 107,9	304 303	138,2 137,2	334 333	166,9 165,9	364 363	201,3 200,2	394 393	236,8 235,6	424 423	270,6 269,3	454 453	312,5 311,1
116	272	107,0	302	136,3	332	164,9	362	199,1	392	234,4	422	268,0	452	309,7
118 120	271 270	106,2 105,4	301 300	135,4 134,5	331 330	163,9 162,9	361 360	198,0 196,9	391 390	233,2 232,0	421 420	266,8 265,5	451 450	308,3 307,0
120	269	105,4	299	134,5	330	162,9	359	195,8	389	232,0	420	264,2	449	307,0
124	268	103,8	298	132,6	328	160,9	358	194,7	388	229,5	418	262,9	448	304,2
126 128	267 266	103,0 102,2	297 296	131,7 130,8	327 326	159,9 158,9	357 356	193,6 192,5	387 386	228,3 227,1	417 416	261,7 260,4	447 446	302,8 301,4
130	265	102,2	295	130,8	325	158,9	355	192,5	385	225,9	415	259,1	445	301,4
132	264	100,6	294	129,0	324	156,9	354	190,3	384	224,7	414	257,9	444	298,7
134 136	263	99,8 99,0	293 292	128,1 127,2	323	155,9	353	189,2 188,1	383	223,5 222,3	413 412	256,6	443 442	297,3
136	262 261	99,0	292	127,2	322 321	155,0 154,0	352 351	188,1 187,0	382 381	222,3	412	255,3 254,1	442	295,9 294,6
140	260	97,4	290	125,4	320	153,0	350	185,9	380	220,0	410	252,8	440	293,2
142	259	96,7	289	124,5	319	152,0	349	184,9	379	218,8	409	251,6	439	291,9
144 146	258 257	95,9 95,1	288 287	123,6 122,7	318 317	151,0 150,1	348 347	183,8 182.7	378 377	217,6 216,4	408 407	250,3 249,1	438 437	290,5 289,1
148	256	94,3	286	121,9	316	149,1	346	181,6	376	215,2	406	247,8	436	287,8
150	255	93,5	285	121,0	315	148,1	345	180,5	375	214,0	405	246,6	435	286,4
152 154	254 253	92,8 92,0	284 283	120,1 119,2	314 313	147,2 146,2	344 343	179,5 178,4	374 373	212,9 211,7	404 403	245,3 244,1	434 433	285,1 283,7
156	252	91,2	282	118,3	312	145,2	342	177,3	372	210,5	402	242,8	432	282,4
158	251	90,5	281	117,5	311	144,3	341	176,3	371	209,3	401	241,6	431	281,1
160	250	89,7	280	116,6	310	143,3	340	175,2	370	208,2	400	240,4	430	279,7

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation.

$k_{\text{H},1}$ for Joist Hanger GLE and GLI - Partial nailing - F1

						Pa	rtial naili							
	_			40		20		Model	-	00	-	.40		00
	n _H	n _J	n _H	40 nյ	n _H	80 n _J	n _H	40 nյ	n _H	00 n _J	n _H	540 n _J	n _H	00 n _J
	6	4	8	5	10	6	8	6	12	8	14	9	16	10
Width	B	kh,1	B	kh,1	В	kh,1	В	kh,1	B	kh,1	B	kh,1	B	kh,1
32 34	134 133	13,2 13,1	154 153	17,6 17,4	174 173	22,7 22,5	204 203	32,2 32,0	234 233	39,1 38,8	254 253	47,2 46,9	284 283	59,8 59,4
36	132	12,9	152	17,2	172	22,2	202	31,7	232	38,5	252	46,5	282	59,0
38	131	12,7	151	17,0	171	21,9	201	31,5	231	38,2	251	46,2	281	58,7
40 42	130 129	12,5 12,4	150 149	16,8 16,6	170 169	21,7 21,4	200 199	31,2 31,0	230 229	37,9 37,6	250 249	45,8 45,5	280 279	58,3 57,9
44	128	12,2	148	16,3	168	21,2	198	30,8	228	37,3	248	45,1	278	57,5
46	127	12,0	147	16,1	167	20,9	197	30,5	227	37,0	247	44,8	277	57,1
48 50	126 125	11,8 11,7	146 145	15,9 15,7	166 165	20,7 20,4	196 195	30,3 30,1	226 225	36,7 36,4	246 245	44,4 44,1	276 275	56,7 56,3
52	124	11,5	144	15,5	164	20,2	194	29,8	224	36,1	244	43,7	274	55,9
54	123	11,3	143	15,3	163	19,9	193	29,6	223	35,8	243	43,4	273	55,5
56 58	122 121	11,1 11,0	142 141	15,1 14,8	162 161	19,7 19,4	192 191	29,4 29,1	222 221	35,4 35,1	242 241	43,0 42,7	272 271	55,1 54,7
60	120	10,8	140	14,6	160	19,4	190	28,9	220	34,8	241	42,7	270	54,7
62	119	10,6	139	14,4	159	18,9	189	28,7	219	34,5	239	42,0	269	54,0
64	118 117	10,4 10,3	138 137	14,2 14,0	158	18,7 18,4	188 187	28,4	218 217	34,2	238 237	41,7 41,3	268	53,6
66 68	117	10,3	137	13,8	157 156	18,4	187	28,2 28,0	217	33,9 33,6	237	41,3	267 266	53,2 52,8
70	115	9,9	135	13,6	155	17,9	185	27,7	215	33,3	235	40,7	265	52,4
72	114	9,8	134	13,4	154	17,7	184	27,5	214	33,1	234	40,3	264	52,0
74 76	113 112	9,6 9,4	133 132	13,2 13,0	153 152	17,4 17,2	183 182	27,3 27,0	213 212	32,8 32,5	233 232	40,0 39,7	263 262	51,7 51,3
78	111	9,3	131	12,8	151	17,0	181	26,8	211	32,2	231	39,3	261	50,9
80	110	9,1	130	12,6	150	16,7	180	26,6	210	31,9	230	39,0	260	50,5
82 84	109 108	9,0 8,8	129 128	12,4 12,2	149 148	16,5 16,3	179 178	26,3 26,1	209 208	31,6 31,3	229 228	38,6 38,3	259 258	50,1 49,8
86	108	8,6	127	12,2	147	16,0	177	25,9	207	31,0	227	38,0	257	49,6
88	106	8,5	126	11,8	146	15,8	176	25,6	206	30,7	226	37,7	256	49,0
90	105	8,3	125	11,6	145	15,6	175 174	25,4	205	30,4	225 224	37,3	255	48,6
92 94	104 103	8,2 8,0	124 123	11,4 11,2	144 143	15,3 15,1	173	25,2 24,9	204 203	30,1 29,8	223	37,0 36,7	254 253	48,2 47,9
96	102	7,8	122	11,0	142	14,9	172	24,7	202	29,5	222	36,3	252	47,5
98	101	7,7	121	10,8	141	14,6	171	24,5	201	29,2	221	36,0	251	47,1
100 102	100 99	7,5 7,4	120 119	10,6 10,4	140 139	14,4 14,2	170 169	24,3 24,0	200 199	29,0 28,7	220 219	35,7 35,4	250 249	46,7 46,4
104	98	7,2	118	10,3	138	14,0	168	23,8	198	28,4	218	35,0	248	46,0
106	97	7,1	117	10,1	137	13,7	167	23,6	197	28,1	217	34,7	247	45,6
108 110	96 95	6,9 6,8	116 115	9,9 9,7	136 135	13,5 13,3	166 165	23,3 23,1	196 195	27,8 27,5	216 215	34,4 34,1	246 245	45,3 44,9
112	-	-	-	-	-	-	164	22,9	194	27,3	214	33,7	244	44,5
114	-	-	-	-	-	-	163	22,7	193	27,0	213	33,4	243	44,2
116 118	-	-	-	-	-	-	162 161	22,4 22,2	192 191	26,7 26,4	212 211	33,1 32,8	242 241	43,8 43,4
120	-	-	-	-	-	-	160	22,2	190	26,4	210	32,5	240	43,4
122	-	-	-	-	-	-	159	21,8	189	25,9	209	32,2	239	42,7
124 126	-	-	-	-	-	-	158 157	21,5 21,3	188 187	25,6 25,3	208 207	31,8 31,5	238 237	42,3 42,0
126	-	-	-	-	-	-	157	21,3	187	25,3 25,0	207	31,5 31,2	237	42,0
130	-	-	-	-	-	-	155	20,9	185	24,8	205	30,9	235	41,2
132	-	-	-	-	-	-	154	20,6	184	24,5	204	30,6	234	40,9
134 136	-	-	-	-	-	-	153 152	20,4 20,2	183 182	24,2 23,9	203 202	30,3 30,0	233 232	40,5 40,2
138	-	-	-	-	-	-	151	20,0	181	23,7	201	29,7	231	39,8
140	-	-	-	-	-	-	150	19,7	180	23,4	200	29,4	230	39,5
142 144	-	-	-	-	-	-	149 148	19,5 19,3	179 178	23,1 22,9	199 198	29,1 28,7	229 228	39,1 38,8
146	-	-	-	-	-	-	147	19,3	176	22,9	196	28,4	227	38,4
148	-	-	-	-	-	-	146	18,9	176	22,3	196	28,1	226	38,1
150 152	-	-	-	-	-	-	145 144	18,6 18,4	175 174	22,1 21,8	195 194	27,8 27,5	225 224	37,7 37,4
154	-	-	-	-	-	-	144	18,4	174	21,8	194	27,5	223	37,4
156	-	-	-	-	-	-	142	18,0	172	21,3	192	27,0	222	36,7
158	-	-	-	-	-	-	141	17,8	171	21,0	191	26,7	221	36,3
160	-	-	-	-	-	-	140	17,5	170	20,8	190	26,4	220	36,0

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation.

$k_{\text{H},1}$ for Joist Hanger GLE and GLI - Partial nailing - F1

						Pa	rtial naili	ing						
								Model						
		60		20		80		40		00		60)20
	n _H 18	n _J 12	n _H 20	n _J 14	n _H 22	n ₃ 15	n _H 24	n _J 16	n _H 28	n _J 18	n _H 28	n J 20	n _H 32	n J 21
Width	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1
32	314	67,8	344	83,0	374	100,9	404	118,2	434	139,6	464	150,1	494	199,7
34 36	313 312	67,4 66,9	343 342	82,5 82,1	373 372	100,3 99,8	403 402	117,6 117,1	433 432	139,0 138,3	463 462	149,5 148,9	493 492	198,9 198,2
38	311	66,5	341	81,6	371	99,3	401	116,5	431	137,7	461	148,3	491	197,4
40	310	66,1	340	81,1	370	98,8	400	115,9	430	137,1	460	147,6	490	196,7
42 44	309 308	65,7 65,3	339 338	80,7 80,2	369 368	98,3 97,8	399 398	115,4 114,8	429 428	136,5 135,8	459 458	147,0 146,4	489 488	195,9 195,2
46	307	64,9	337	79,8	367	97,8	397	114,8	420	135,6	456	145,8	487	195,2
48	306	64,5	336	79,3	366	96,8	396	113,7	426	134,6	456	145,2	486	193,7
50	305	64,0	335	78,9	365	96,3	395	113,2	425	134,0	455	144,6	485	192,9
52 54	304 303	63,6 63,2	334 333	78,4 78,0	364 363	95,8 95,3	394 393	112,6 112,1	424 423	133,4 132,7	454 453	143,9 143,3	484 483	192,2 191,4
56	302	62,8	332	77,5	362	94,8	392	111,5	422	132,1	452	142,7	482	190,7
58	301	62,4	331	77,0	361	94,3	391	111,0	421	131,5	451	142,1	481	189,9
60 62	300 299	62,0 61,6	330 329	76,6 76,1	360	93,8 93,2	390 389	110,4 109,9	420 419	130,9	450 449	141,5 140,9	480 479	189,2 188,4
64	299	61,6	329	75,7	359 358	93,2	388	109,9	419	130,3 129,7	449	140,9	479	188,4
66	297	60,8	327	75,2	357	92,2	387	108,8	417	129,1	447	139,7	477	187,0
68	296 295	60,4 60,0	326 325	74,8 74,3	356	91,7 91,2	386 385	108,3 107,7	416 415	128,4 127,8	446 445	139,0 138,4	476 475	186,2 185,5
70 72	295	59,6	325	74,3	355 354	90,7	385	107,7	415	127,8	445	138,4	475	185,5
74	293	59,2	323	73,5	353	90,2	383	106,6	413	126,6	443	137,2	473	184,0
76	292	58,8	322	73,0	352	89,7	382	106,1	412	126,0	442	136,6	472	183,3
78 80	291 290	58,4 58,0	321 320	72,6 72,1	351 350	89,3 88,8	381 380	105,6 105,0	411 410	125,4 124,8	441 440	136,0 135,4	471 470	182,5 181,8
82	289	57,6	319	71,7	349	88,3	379	105,0	409	124,8	439	134,8	469	181,0
84	288	57,2	318	71,2	348	87,8	378	103,9	408	123,6	438	134,2	468	180,3
86	287	56,8	317	70,8	347	87,3	377	103,4	407	123,0	437	133,6	467	179,6
88 90	286 285	56,4 56,0	316 315	70,3 69,9	346 345	86,8 86,3	376 375	102,9 102,3	406 405	122,4 121,8	436 435	133,0 132,4	466 465	178,8 178,1
92	284	55,6	314	69,5	344	85,8	374	101,8	404	121,2	434	131,8	464	177,4
94	283	55,2	313	69,0	343	85,3	373	101,3	403	120,6	433	131,2	463	176,6
96 98	282 281	54,8 54,4	312 311	68,6 68,2	342 341	84,8 84,3	372 371	100,7 100,2	402 401	120,0 119,4	432 431	130,6 130,0	462 461	175,9 175,2
100	280	54,0	310	67,7	340	83,8	370	99,6	400	118,8	430	129,4	460	173,2
102	279	53,6	309	67,3	339	83,3	369	99,1	399	118,2	429	128,8	459	173,7
104	278	53,2 52,9	308	66,9	338	82,9	368	98,6	398	117,6	428	128,2	458	173,0
106 108	277 276	52,9 52,5	307 306	66,4 66,0	337 336	82,4 81,9	367 366	98,1 97,5	397 396	117,0 116,4	427 426	127,6 127,0	457 456	172,2 171,5
110	275	52,1	305	65,6	335	81,4	365	97,0	395	115,8	425	126,4	455	170,8
112	274	51,7	304	65,1	334	80,9	364	96,5	394	115,2	424	125,8	454	170,1
114 116	273 272	51,3 50,9	303 302	64,7 64,3	333 332	80,4 79,9	363 362	95,9 95,4	393 392	114,6 114,0	423 422	125,2 124,6	453 452	169,3 168,6
118	271	50,6	301	63,8	331	79,5	361	94,9	391	113,4	421	124,0	451	167,9
120	270	50,2	300	63,4	330	79,0	360	94,4	390	112,8	420	123,5	450	167,2
122 124	269 268	49,8 49,4	299 298	63,0 62,6	329 328	78,5 78,0	359 358	93,8 93,3	389 388	112,3 111,7	419 418	122,9 122,3	449 448	166,4 165,7
124	268	49,4	298	62,1	328	78,0 77,6	358	93,3	388	111,7	418	122,3	448	165,7
128	266	48,7	296	61,7	326	77,1	356	92,3	386	110,5	416	121,1	446	164,3
130	265	48,3	295	61,3	325	76,6	355	91,8	385	109,9	415	120,5	445	163,5
132 134	264 263	47,9 47,5	294 293	60,9 60,5	324 323	76,1 75,6	354 353	91,2 90,7	384 383	109,3 108,7	414 413	119,9 119,4	444 443	162,8 162,1
136	262	47,3	292	60,0	323	75,0	352	90,2	382	108,7	412	118,8	442	161,4
138	261	46,8	291	59,6	321	74,7	351	89,7	381	107,6	411	118,2	441	160,7
140 142	260 259	46,4 46,1	290 289	59,2 58,8	320 319	74,2 73,8	350 349	89,2 88,7	380 379	107,0 106,4	410 409	117,6 117,0	440 439	159,9 159,2
144	259	45,7	289	58,8	319	73,8	349	88,7	379	105,4	409	117,0	439	159,2
146	257	45,3	287	58,0	317	72,8	347	87,6	377	105,3	407	115,9	437	157,8
148	256	45,0	286	57,6	316	72,4	346	87,1	376	104,7	406	115,3	436	157,1
150 152	255 254	44,6 44,2	285 284	57,1 56,7	315 314	71,9 71,4	345 344	86,6 86,1	375 374	104,1 103,6	405 404	114,7 114,2	435 434	156,4 155,6
154	253	43,9	283	56,3	313	71,4	343	85,6	373	103,6	404	113,6	434	154,9
156	252	43,5	282	55,9	312	70,5	342	85,1	372	102,4	402	113,0	432	154,2
158	251	43,2	281	55,5	311	70,0	341	84,6	371	101,9	401	112,5	431	153,5
160	250	42,8	280	55,1	310	69,6	340	84,1	370	101,3	400	111,9	430	152,8

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation.

$k_{\text{H,2}} \, \text{for GLE}$ and GLI - Full or partial nailing - F2

Blank		nber of nails header	k _{H2}					
	Full nailing	Partial nailing	Full nailing	Partial nailing				
300	12	6	10.1	5.6				
340	16	8	15.8	8.8				
380	20	10	22.7	12.5				
440	20	8	22.8	6.7				
500	26	12	34.5	16.2				
540	30	14	43.9	20.7				
600	36	16	59.9	25.8				
660	40	18	76.3	35.1				
720	46	20	96.4	41.2				
780	48	22	106	49.7				
840	54	24	131	58.2				
900	60	28	158.9	75.9				
960	64 28		183.2	80.4				
1020	70 32		214.9	99.9				

Page 105 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

Characteristic capacities for GLE/2.5X - with connector screw SSH/SSF without pre drilling

		Pro	duct ca	pacities -	Timbe	r to Tim	ber - La	rge con	nector	screw		
		Fastene	ers			Cha	racteris	tic cap	acities -	Timbe	r C24	
Blank		Header	J	oist		R	1.k			F	2.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
GLE300/2.5X	2	SSH12.0x60	7	CNA*	10,6	11,0	11,6	11,7	9,9	10,3	11,1	11,3
GLL300/2.3X	2	SSH12.0x120	7	CNA*	11.6	12.8	14.0	14.2	11.6	12.6	13.5	13.7
GLE340/2.5X	2	SSH12.0x60	9	CNA*	12,0	12,2	12,5	12,5	11,3	11,8	12,4	12,5
GLE340/2.5X	2	SSH12.0x120	9	CNA*	14.3	14.5	14.8	14.8	13.5	13.9	14.5	14.7
GLE380/2.5X	2	SSH12.0x60	11	CNA*	12,5	12,5	12,5	12,5	12,4	12,5	12,5	12,5
GLE300/2.5X	2	SSH12.0x120	11	CNA*	14.8	14.9	14.9	14.9	14.5	14.8	14.9	14.9
GLE440/2.5X	4	SSH12.0x60	12	CNA*	19,6	20,7	22,2	22,5	19,6	20,6	22,1	22,5
GLE440/2.5A	4	SSH12.0x120	12	CNA*	19.9	21.9	26.0	26.4	19.9	21.9	25.9	26.4
CL FF00/2 FV	4	SSH12.0x60	15	CNA*	22,6	23,2	23,6	23,6	22,7	23,3	23,6	23,6
GLE500/2.5X	4	SSH12.0x120	15	CNA*	24.9	27.0	28.1	28.2	24.9	27.1	28.1	28.2
OL 5540/0.5V	4	SSH12.0x60	17	CNA*	23,9	24,0	24,0	24,0	23,9	24,0	24,0	24,0
GLE540/2.5X	4	SSH12.0x120	17	CNA*	27.7	28.4	28.7	28.7	27.8	28.4	28.7	28.7
OL E000/0 FV	4	SSH12.0x60	20	CNA*	24,3	24,3	24,3	24,3	24,3	24,3	24,3	24,3
GLE600/2.5X	4	SSH12.0x120	20	CNA*	28.9	29.0	29.0	29.0	28.9	29.0	29.0	29.0
OL Ecco/o EV	6	SSH12.0x60	23	CNA*	35,5	36,0	36,0	36,0	35,6	36,0	36,0	36,0
GLE660/2.5X	6	SSH12.0x120	23	CNA*	38.2	41.8	42.9	42.9	38.2	41.9	42.9	42.9
01 5700/0 57	6	SSH12.0x60	26	CNA*	36,3	36,3	36,3	36,3	36,3	36,3	36,3	36,3
GLE720/2.5X	6	SSH12.0x120	26	CNA*	42.6	43.3	43.3	43.3	42.7	43.3	43.3	43.3
01 5700/0 57	6	SSH12.0x60	29	CNA*	36,6	36,6	36,6	36,6	36,6	36,6	36,6	36,6
GLE780/2.5X	6	SSH12.0x120	29	CNA*	43.7	43.7	43.7	43.7	43.7	43.7	43.7	43.7
01 5040/0 57/	6	SSH12.0x60	32	CNA*	36,7	36,7	36,7	36,7	36,7	36,7	36,7	36,7
GLE840/2.5X	6	SSH12.0x120	32	CNA*	43.8	43.8	43.8	43.8	43.8	43.8	43.8	43.8
OL F000/0.5V	6	SSH12.0x60	35	CNA*	36,9	36,9	36,9	36,9	36,9	36,9	36,9	36,9
GLE900/2.5X	6	SSH12.0x120	35	CNA*	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0
OL F000/0 51/	8	SSH12.0x60	38	CNA*	49,0	49,0	49,0	49,0	49,0	49,0	49,0	49,0
GLE960/2.5X	8	SSH12.0x120	38	CNA*	58.5	58.5	58.5	58.5	58.5	58.5	58.5	58.5
01 54000/0 51/	8	SSH12.0x60	41	CNA*	49,2	49,2	49,2	49,2	49,2	49,2	49,2	49,2
GLE1020/2.5X	8	SSH12.0x120	41	CNA*	58.8	58.8	58.8	58.8	58.8	58.8	58.8	58.8

Page 106 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

		Pro	duct ca	pacities	- Timbe	r to Tim	ber - La	rge con	nector	screw		
		Fastene	rs			Cha	racteris	tic capa	cities -	Timber	C24	
Blank		Header	Jo	oist		R	3.k			R	4.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
GLE300/2.5X	2	SSH12.0x60	7	CNA*	2,2	2,5	3,2	3,9	5,0	5,0	5,0	5,0
GLE300/2.5X	2	SSH12.0x120	7	CNA*	2.7	3.0	3.8	4.6	5.0	5.0	5.0	5.0
GLE340/2.5X	2	SSH12.0x60	9	CNA*	1,8	2,1	2,7	3,3	5,0	5,0	5,0	5,0
GLL340/2.3X	2	SSH12.0x120	9	CNA*	2.2	2.5	3.2	3.9	5.0	5.0	5.0	5.0
GLE380/2.5X	2	SSH12.0x60	11	CNA*	1,5	1,8	2,2	2,8	5,0	5,0	5,0	5,0
GLE360/2.5X	2	SSH12.0x120	11	CNA*	1.8	2.1	2.7	3.3	5.0	5.0	5.0	5.0
CL E440/2 EV	4	SSH12.0x60	12	CNA*	3,8	4,0	4,6	5,2	10,0	10,0	10,0	10,0
GLE440/2.5X	4	SSH12.0x120	12	CNA*	3.8	4.8	5.5	6.2	10.0	10.0	10.0	10.0
GLE500/2.5X	4	SSH12.0x60	15	CNA*	3,5	3,7	4,1	4,6	10,0	10,0	10,0	10,0
GLE300/2.5X	4	SSH12.0x120	15	CNA*	4.2	4.4	4.9	5.4	10.0	10.0	10.0	10.0
CL FE40/2 EV	4	SSH12.0x60	17	CNA*	3,7	3,9	4,2	4,6	10,0	10,0	10,0	10,0
GLE540/2.5X	4	SSH12.0x120	17	CNA*	4.4	4.6	5.0	5.5	10.0	10.0	10.0	10.0
CL E000/2 EV	4	SSH12.0x60	20	CNA*	3,6	3,7	4,0	4,3	10,0	10,0	10,0	10,0
GLE600/2.5X	4	SSH12.0x120	20	CNA*	4.3	4.4	4.8	5.1	10.0	10.0	10.0	10.0
OLECCO/OLEV	6	SSH12.0x60	23	CNA*	4,8	5,0	5,3	5,7	15,0	15,0	15,0	15,0
GLE660/2.5X	6	SSH12.0x120	23	CNA*	4.9	6.0	6.4	6.8	15.0	15.0	15.0	15.0
GLE720/2.5X	6	SSH12.0x60	26	CNA*	4,7	4,8	5,1	5,4	15,0	15,0	15,0	15,0
GLE/20/2.5X	6	SSH12.0x120	26	CNA*	5.1	5.7	6.1	6.4	15.0	15.0	15.0	15.0
OL 5700/0 5V	6	SSH12.0x60	29	CNA*	5,2	5,4	5,7	6,0	15,0	15,0	15,0	15,0
GLE780/2.5X	6	SSH12.0x120	29	CNA*	5.2	6.5	6.8	7.1	15.0	15.0	15.0	15.0
CL F040/2 FV	6	SSH12.0x60	32	CNA*	5,1	5,2	5,4	5,7	15,0	15,0	15,0	15,0
GLE840/2.5X	6	SSH12.0x120	32	CNA*	5.3	6.2	6.5	6.7	15.0	15.0	15.0	15.0
OL 5000/0.5V	6	SSH12.0x60	35	CNA*	5,4	5,8	6,0	6,2	15,0	15,0	15,0	15,0
GLE900/2.5X	6	SSH12.0x120	35	CNA*	5.4	6.7	7.1	7.4	15.0	15.0	15.0	15.0
CL FOCO/O FY	8	SSH12.0x60	38	CNA*	5,4	6,4	6,6	6,8	20,0	20,0	20,0	20,0
GLE960/2.5X	8	SSH12.0x120	38	CNA*	5.4	6.8	7.9	8.2	20.0	20.0	20.0	20.0
CL E4000/0.5V	8	SSH12.0x60	41	CNA*	5,5	6,9	7,2	7,5	20,0	20,0	20,0	20,0
GLE1020/2.5X	8	SSH12.0x120	41	CNA*	5.5	6.9	8.6	8.9	20.0	20.0	20.0	20.0

The user shall verify the transversal tension in timber which is not included in these capacities.

^{*}Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

There is no improvement of the characteristic values between SSH12.0x60 and SSH12.0x100 without pre drilling.

Page 107 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

Characteristic capacities for GLE/2.5X - with connector screw SSH/SSF with pre drilling

Onaracteris	1000	pacities for G		apacities -							ig	
		Fasten	ers	•		Cha	racteris	stic cap	acities ·	- Timbe	r C24	
Blank		Header	J	oist		R	1.k			F	R _{2.k}	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
	2	SSH12.0x60	7	CNA*	11.1	11.5	12.1	12.3	10.4	10.8	11.6	11.8
GLE300/2.5X	2	SSH12.0x80	7	CNA*	11.5	12.5	13.7	14	11	11.6	12.7	13
	2	SSH12.0x120	7	CNA*	11.5	12.7	15.4	16.4	11.5	12.7	15.1	15.5
GLE340/2.5X	2	SSH12.0x60 SSH12.0x80	9	CNA*	12.5 14.3	12.7 14.9	13.0 15.7	13.1 15.9	11.8 12.8	12.2 13.5	12.9 14.8	13.1 15.2
GLE340/2.3X	2	SSH12.0x120	9	CNA*	14.9	16.4	18.2	18.4	14.8	15.7	17	17.4
	2	SSH12.0x60	11	CNA*	13.1	13.1	13.1	13.1	12.9	13.1	13.1	13.1
GLE380/2.5X	2	SSH12.0x80	11	CNA*	15.8	16.1	16.4	16.4	14.7	15.3	16.4	16.4
	2	SSH12.0x120	11	CNA*	18.1	18.6	19	19.1	16.7	17.4	18.6	18.9
	4	SSH12.0x60	12	CNA*	19.9	21.4	23.1	23.4	19.9	21.3	23.0	23.4
GLE440/2.5X	4	SSH12.0x80	12	CNA*	19.8	21.9	25.7	26.5	19.9	21.9	25.6	26.5
	4	SSH12.0x120	12	CNA*	19.8	21.9	26.6	28.3	19.9	21.9	26.6	28.3
	4	SSH12.0x60	15	CNA*	23.4	24.2	24.8	24.8	23.5	24.3	24.8	24.8
GLE500/2.5X	4	SSH12.0x80	15	CNA*	24.8	26.9	29.7	30.3	24.8	27.1	29.8	30.4
	4	SSH12.0x120	15	CNA*	24.8	27.4	33.1	34.3	24.8	27.4	33.2	34.4
GLE540/2.5X	4	SSH12.0x60 SSH12.0x80	17 17	CNA*	24.9 27.9	25.2 29.5	25.2 31.5	25.2 31.6	24.9 28	25.2 29.6	25.2 31.5	25.2 31.6
GLE340/2.3X	4	SSH12.0x120	17	CNA*	28.2	31	35.8	36.3	28.2	31	35.9	36.4
	4	SSH12.0x60	20	CNA*	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5
GLE600/2.5X	4	SSH12.0x80	20	CNA*	31	31.8	31.9	31.9	31.1	31.8	31.9	31.9
	4	SSH12.0x120	20	CNA*	33.1	35.9	37.2	37.2	33.1	36	37.2	37.2
	6	SSH12.0x60	23	CNA*	36.8	37.7	37.7	37.7	36.9	37.7	37.7	37.7
GLE660/2.5X	6	SSH12.0x80	23	CNA*	38.1	42	46.9	47.4	38.1	42	46.9	47.4
	6	SSH12.0x120	23	CNA*	38.1	42	51	53.4	38.1	42	51	53.6
	6	SSH12.0x60	26	CNA*	38.1	38.1	38.1	38.1	38.1	38.1	38.1	38.1
GLE720/2.5X	6	SSH12.0x80	26	CNA*	43.1	46.2	47.8	47.8	43.1	46.3	47.8	47.8
	6 6	SSH12.0x120 SSH12.0x60	26 29	CNA*	43.1	47.5	55.2	55.7	43.1	47.5	55.2	55.7
GLE780/2.5X	6	SSH12.0x80	29	CNA*	38.4 47	38.4 48.2	38.4 48.3	38.4 48.3	38.4 47	38.4 48.2	38.4 48.3	38.4 48.3
GLL700/2.0X	6	SSH12.0x120	29	CNA*	48.1	53	56.2	56.2	48.1	53	56.2	56.2
	6	SSH12.0x60	32	CNA*	38.5	38.5	38.5	38.5	38.5	38.5	38.5	38.5
GLE840/2.5X	6	SSH12.0x80	32	CNA*	48.4	48.4	48.4	48.4	48.4	48.4	48.4	48.4
	6	SSH12.0x120	32	CNA*	53.1	56.2	56.4	56.4	53.1	56.2	56.4	56.4
	6	SSH12.0x60	35	CNA*	38.7	38.7	38.7	38.7	38.7	38.7	38.7	38.7
GLE900/2.5X	6	SSH12.0x80	35	CNA*	48.6	48.6	48.6	48.6	48.6	48.6	48.6	48.6
	6	SSH12.0x120	35	CNA*	56.4	56.6	56.6	56.6	56.4	56.6	56.6	56.6
	8	SSH12.0x60	38	CNA*	51.4	51.4	51.4	51.4	51.4	51.4	51.4	51.4
GLE960/2.5X	8	SSH12.0x80	38	CNA*	62.5	64.5	64.5	64.5	62.7	64.5	64.5	64.5
	8	SSH12.0x120	38	CNA*	63	69.5	75.2	75.2	63	69.5	75.2	75.2
GLE1020/2.5X	8	SSH12.0x60 SSH12.0x80	41 41	CNA*	51.7 64.8	51.7 64.9	51.7 64.9	51.7 64.9	51.7 64.9	51.7 64.9	51.7 64.9	51.7 64.9
GLL 1020/2.5X	8	SSH12.0x60 SSH12.0x120	41	CNA*	68	74.6	75.6	75.6	68	74.7	75.6	75.6
	O	331112.03120	41	CINA	00	14.0	15.0	15.0	00	14.1	15.0	10.0

Page 108 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

		Prod	uct ca	pacities	- Timbe	er to Tin	nber - Lar	ge conn	ector s	crew		
		Fastener	S	·		Cha	aracteristi	c capac	ities - T	imber C	224	
Blank		Header	Jo	ist		I	R _{3.k}			R	4.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
	2	SSH12.0x60	7	CNA*	2.3	2.6	3.3	4	5	5	5	5
GLE300/2.5X	2	SSH12.0x80	7	CNA*	2.6	3.3	4.2	5.1	5	5	5	5
	2	SSH12.0x120	7	CNA*	2.6	3.3	4.7	5.9	5	5	5	5
	2	SSH12.0x60	9	CNA*	1.9	2.2	2.7	3.4	5	5	5	5
GLE340/2.5X	2	SSH12.0x80	9	CNA*	2.4	2.7	3.5	4.2	5	5	5	5
	2	SSH12.0x120	9	CNA*	2.8	3.2	4	4.9	5	5	5	5
	2	SSH12.0x60	11	CNA*	1.6	1.8	2.3	2.8	5	5	5	5
GLE380/2.5X	2	SSH12.0x80	11	CNA*	2	2.3	2.9	3.6	5	5	5	5
	2	SSH12.0x120	11	CNA*	2.3	2.7	3.4	4.2	5	5	5	5
	4	SSH12.0x60	12	CNA*	3.8	4.2	4.8	5.4	10	10	10	10
GLE440/2.5X	4	SSH12.0x80	12	CNA*	3.8	4.7	6	6.8	10	10	10	10
	4	SSH12.0x120	12	CNA*	3.8	4.7	6.9	8	10	10	10	10
	4	SSH12.0x60	15	CNA*	3.6	3.8	4.3	4.7	10	10	10	10
GLE500/2.5X	4	SSH12.0x80	15	CNA*	4.2	4.8	5.4	6	10	10	10	10
	4	SSH12.0x120	15	CNA*	4.2	5.3	6.3	6.9	10	10	10	10
	4	SSH12.0x60	17	CNA*	3.9	4	4.4	4.8	10	10	10	10
GLE540/2.5X	4	SSH12.0x80	17	CNA*	4.4	5.1	5.5	6	10	10	10	10
	4	SSH12.0x120	17	CNA*	4.4	5.6	6.4	7	10	10	10	10
	4	SSH12.0x60	20	CNA*	3.7	3.9	4.1	4.5	10	10	10	10
GLE600/2.5X	4	SSH12.0x80	20	CNA*	4.7	4.9	5.2	5.6	10	10	10	10
	4	SSH12.0x120	20	CNA*	4.7	5.7	6.1	6.5	10	10	10	10
	6	SSH12.0x60	23	CNA*	4.9	5.2	5.5	5.9	15	15	15	15
GLE660/2.5X	6	SSH12.0x80	23	CNA*	4.9	6.2	7	7.5	15	15	15	15
	6	SSH12.0x120	23	CNA*	4.9	6.2	8.1	8.7	15	15	15	15
	6	SSH12.0x60	26	CNA*	4.8	5	5.3	5.6	15	15	15	15
GLE720/2.5X	6	SSH12.0x80	26	CNA*	5	6.3	6.6	7.1	15	15	15	15
	6	SSH12.0x120	26	CNA*	5	6.3	7.8	8.2	15	15	15	15
	6	SSH12.0x60	29	CNA*	5.2	5.7	5.9	6.2	15	15	15	15
GLE780/2.5X	6	SSH12.0x80	29	CNA*	5.2	6.5	7.5	7.8	15	15	15	15
	6	SSH12.0x120	29	CNA*	5.2	6.5	8.7	9.1	15	15	15	15
	6	SSH12.0x60	32	CNA*	5.2	5.4	5.6	5.9	15	15	15	15
GLE840/2.5X	6	SSH12.0x80	32	CNA*	5.2	6.6	7.1	7.4	15	15	15	15
	6	SSH12.0x120	32	CNA*	5.2	6.6	8.3	8.6	15	15	15	15
	6	SSH12.0x60	35	CNA*	5.3	6	6.2	6.4	15	15	15	15
GLE900/2.5X	6	SSH12.0x80	35	CNA*	5.3	6.7	7.8	8.1	15	15	15	15
	6	SSH12.0x120	35	CNA*	5.3	6.7	9.1	9.4	15	15	15	15
	8	SSH12.0x60	38	CNA*	5.4	6.6	6.9	7.1	20	20	20	20
GLE960/2.5X	8	SSH12.0x80	38	CNA*	5.4	6.8	8.6	9	20	20	20	20
	8	SSH12.0x120	38	CNA*	5.4	6.8	10.1	10.5	20	20	20	20
0.5	8	SSH12.0x60	41	CNA*	5.4	6.8	7.5	7.8	20	20	20	20
GLE1020/2.5X	8	SSH12.0x80	41	CNA*	5.4	6.8	9.5	9.8	20	20	20	20
	8	SSH12.0x120	41	CNA*	5.4	6.8	10.3	11.4	20	20	20	20

The user shall verify the transversal tension in timber which is not included in these capacities.

*Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

Characteristic capacities for GLE/4X - with connector screw SSH/SSF without pre drilling

		Proc	duct ca	apacities -	Timber	to Timb	oer - Lar	ge con	nector s	crew		
		Fastene	rs			Cha	aracteris	stic cap	acities -	Timber	· C24	
Blank		Header		Joist		R	1.k		R _{2.k}			
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
OL 5000/4V	2	SSH12.0x60	7	CNA*	9,3	9,4	9,7	9,8	8,9	9,0	9,5	9,7
GLE300/4X	2	SSH12.0x120	7	CNA*	11.6	11.9	13.8	14.0	11.6	11.9	13.1	13.4
CL F240/4V	2	SSH12.0x60	9	CNA*	9,9	10,0	10,1	10,1	9,7	9,9	10,1	10,1
GLE340/4X	2	SSH12.0x120	9	CNA*	13.8	14.4	14.7	14.8	13.1	13.5	14.3	14.5
CL F290/4V	2	SSH12.0x60	11	CNA*	10,1	10,1	10,1	10,1	10,1	10,1	10,1	10,1
GLE380/4X	2	SSH12.0x120	11	CNA*	14.7	14.8	14.9	14.9	14.2	14.5	14.9	14.9
CL E440/4V	4	SSH12.0x60	12	CNA*	17,2	17,8	18,4	18,5	17,2	17,7	18,4	18,5
GLE440/4X	4	SSH12.0x120	12	CNA*	18.5	20.4	24.8	26.0	18.5	20.4	24.8	25.9
CL FEOO/AV	4	SSH12.0x60	15	CNA*	18,9	19,0	19,0	19,0	18,9	19,0	19,0	19,0
GLE500/4X	4	SSH12.0x120	15	CNA*	23.1	25.5	27.8	28.0	23.1	25.5	27.8	28.1
CLEF40/4V	4	SSH12.0x60	17	CNA*	19,4	19,4	19,4	19,4	19,4	19,4	19,4	19,4
GLE540/4X	4	SSH12.0x120	17	CNA*	26.2	27.9	28.7	28.7	26.2	28.0	28.7	28.7
GLE600/4X	4	SSH12.0x60	20	CNA*	19,6	19,6	19,6	19,6	19,6	19,6	19,6	19,6
GLE600/4X	4	SSH12.0x120	20	CNA*	28.7	28.9	29.0	29.0	28.7	28.9	29.0	29.0
CL Ecco/4V	6	SSH12.0x60	23	CNA*	29,0	29,0	29,0	29,0	29,0	29,0	29,0	29,0
GLE660/4X	6	SSH12.0x120	23	CNA*	35.4	39.1	42.9	42.9	35.4	39.1	42.9	42.9
GLE720/4X	6	SSH12.0x60	26	CNA*	29,2	29,2	29,2	29,2	29,2	29,2	29,2	29,2
GLE / 20/4X	6	SSH12.0x120	26	CNA*	40.0	42.9	43.3	43.3	40.0	42.9	43.3	43.3
CL E790/4V	6	SSH12.0x60	29	CNA*	29,5	29,5	29,5	29,5	29,5	29,5	29,5	29,5
GLE780/4X	6	SSH12.0x120	29	CNA*	43.4	43.7	43.7	43.7	43.4	43.7	43.7	43.7
GLE840/4X	6	SSH12.0x60	32	CNA*	29,6	29,6	29,6	29,6	29,6	29,6	29,6	29,6
GLE040/4A	6	SSH12.0x120	32	CNA*	43.8	43.8	43.8	43.8	43.8	43.8	43.8	43.8
CL E000/4V	6	SSH12.0x60	35	CNA*	29,7	29,7	29,7	29,7	29,7	29,7	29,7	29,7
GLE900/4X	6	SSH12.0x120	35	CNA*	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0
GLE960/4X	8	SSH12.0x60	38	CNA*	39,5	39,5	39,5	39,5	39,5	39,5	39,5	39,5
GLE90U/4X	8	SSH12.0x120	38	CNA*	58.0	58.5	58.5	58.5	58.1	58.5	58.5	58.5
GL E1020/4Y	8	SSH12.0x60	41	CNA*	39,7	39,7	39,7	39,7	39,7	39,7	39,7	39,7
GLE1020/4X	8	SSH12.0x120	41	CNA*	58.8	58.8	58.8	58.8	58.8	58.8	58.8	58.8

Page 110 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

		Prod	uct ca	pacities -	Timber	to Timb	per - Lar	ge conn	ector s	crew		
		Fastener	s			Cha	aracteris	tic capa	acities -	Timber	C24	
Blank		Header	J	oist		R	3.k		R _{4.k}			
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
CL F200/4V	2	SSH12.0x60	7	CNA*	1,6	1,8	2,3	2,8	9.3	9.5	10.4	10.4
GLE300/4X	2	SSH12.0x120	7	CNA*	2.4	2.7	3.4	4.2	9.3	9.5	10.4	10.4
CL = 240/4V	2	SSH12.0x60	9	CNA*	1,3	1,5	2,0	2,4	10.4	10.4	10.4	10.4
GLE340/4X	2	SSH12.0x120	9	CNA*	2.0	2.3	2.9	3.5	10.4	10.4	10.4	10.4
CL F290/4V	2	SSH12.0x60	11	CNA*	1,1	1,3	1,7	2,0	10.4	10.4	10.4	10.4
GLE380/4X	2	SSH12.0x120	11	CNA*	1.7	1.9	2.4	3.0	10.4	10.4	10.4	10.4
CL E 440/4V	4	SSH12.0x60	12	CNA*	2,9	3,1	3,5	4,0	14.8	16.3	19.9	20.8
GLE440/4X	4	SSH12.0x120	12	CNA*	3.6	4.5	5.2	5.9	14.8	16.3	19.9	20.8
CL FF00/AV	4	SSH12.0x60	15	CNA*	2,7	2,8	3,2	3,5	18.5	20.4	20.8	20.8
GLE500/4X	4	SSH12.0x120	15	CNA*	4.0	4.2	4.7	5.2	18.5	20.4	20.8	20.8
CLEF40/4V	4	SSH12.0x60	17	CNA*	2,9	3,0	3,3	3,6	20.8	20.8	20.8	20.8
GLE540/4X	4	SSH12.0x120	17	CNA*	4.2	4.4	4.8	5.3	20.8	20.8	20.8	20.8
CL ECOO/AV	4	SSH12.0x60	20	CNA*	2,8	2,9	3,1	3,3	20.8	20.8	20.8	20.8
GLE600/4X	4	SSH12.0x120	20	CNA*	4.1	4.3	4.6	4.9	20.8	20.8	20.8	20.8
OL FOCO/AV	6	SSH12.0x60	23	CNA*	3,8	3,9	4,2	4,5	28.3	31.2	31.2	31.2
GLE660/4X	6	SSH12.0x120	23	CNA*	4.6	5.8	6.2	6.6	28.3	31.2	31.2	31.2
CL E700/4V	6	SSH12.0x60	26	CNA*	3,7	3,8	4,0	4,2	31.2	31.2	31.2	31.2
GLE720/4X	6	SSH12.0x120	26	CNA*	4.7	5.6	5.9	6.3	31.2	31.2	31.2	31.2
CL E700/4V	6	SSH12.0x60	29	CNA*	4,2	4,3	4,5	4,7	31.2	31.2	31.2	31.2
GLE780/4X	6	SSH12.0x120	29	CNA*	4.8	6.1	6.6	6.9	31.2	31.2	31.2	31.2
CL F040/4V	6	SSH12.0x60	32	CNA*	4,0	4,1	4,3	4,5	31.2	31.2	31.2	31.2
GLE840/4X	6	SSH12.0x120	32	CNA*	4.9	6.1	6.3	6.6	31.2	31.2	31.2	31.2
CL F000/4V	6	SSH12.0x60	35	CNA*	4,5	4,5	4,7	4,9	31.2	31.2	31.2	31.2
GLE900/4X	6	SSH12.0x120	35	CNA*	5.0	6.3	7.0	7.2	31.2	31.2	31.2	31.2
CL E060/4Y	8	SSH12.0x60	38	CNA*	5,0	5,0	5,2	5,4	41.6	41.6	41.6	41.6
GLE960/4X	8	SSH12.0x120	38	CNA*	5.0	6.3	7.7	8.0	41.6	41.6	41.6	41.6
CL E4020/4V	8	SSH12.0x60	41	CNA*	5,1	5,6	5,7	5,9	41.6	41.6	41.6	41.6
GLE1020/4X	8	SSH12.0x120	41	CNA*	5.1	6.4	8.5	8.7	41.6	41.6	41.6	41.6

The user shall verify the transversal tension in timber which is not included in these capacities.

^{*}Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

There is no improvement of the characteristic values between SSH12.0x60 and SSH12.0x100 without pre drilling.

Page 111 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

Characteristic capacities for GLE/4X - with connector screw SSH/SSF with pre drilling

Product capacities - Timber to Timber - Large connector screw												
		Fastene	rs			Cha	aracteris	stic cap	acities -	Timbe	· C24	
Blank		Header		Joist		R	1.k			F	2.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
	2	SSH12.0x60	7	CNA*	11.0	11.1	11.8	12.1	10.3	10.4	11.2	11.5
GLE300/4X	2	SSH12.0x80	7	CNA*	11.6	11.9	13.2	13.6	10.9	11.1	12.2	12.6
	2	SSH12.0x120	7	CNA*	11.6	11.9	14.5	15.6	11.6	11.9	14.4	15.1
	2	SSH12.0x60	9	CNA*	12.3	12.5	12.9	13.0	11.3	11.8	12.6	12.9
GLE340/4X	2	SSH12.0x80	9	CNA*	13.7	14.4	15.4	15.7	12.3	12.9	14.2	14.7
	2	SSH12.0x120	9	CNA*	13.8	15.3	17.9	18.2	13.8	15.0	16.5	17.0
	2	SSH12.0x60	11	CNA*	13.0	13.1	13.1	13.1	12.6	13.0	13.1	13.1
GLE380/4X	2	SSH12.0x80	11	CNA*	15.5	15.9	16.4	16.4	14	14.7	16	16.4
	2	SSH12.0x120	11	CNA*	16.9	18.3	18.9	19.0	16.0	16.8	18.1	18.6
	4	SSH12.0x60	12	CNA*	18.5	20.3	22.5	23.0	18.5	20.3	22.4	23.0
GLE440/4X	4	SSH12.0x80	12	CNA*	18.5	20.4	24.5	25.7	18.5	20.4	24.4	25.6
	4	SSH12.0x120	12	CNA*	18.5	20.4	24.8	26.7	18.5	20.4	24.8	26.7
	4	SSH12.0x60	15	CNA*	22.5	23.6	24.7	24.8	22.7	23.7	24.7	24.8
GLE500/4X	4	SSH12.0x80	15	CNA*	23.1	25.4	28.8	29.7	23.1	25.5	28.9	29.8
	4	SSH12.0x120	15	CNA*	23.1	25.5	31.0	33.2	23.1	25.5	31.0	33.4
	4	SSH12.0x60	17	CNA*	24.3	24.9	25.2	25.2	24.4	25.0	25.2	25.2
GLE540/4X	4	SSH12.0x80	17	CNA*	26.2	28.3	30.9	31.5	26.2	28.4	31	31.5
	4	SSH12.0x120	17	CNA*	26.2	28.9	34.7	35.8	26.2	28.9	34.9	35.9
	4	SSH12.0x60	20	CNA*	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5
GLE600/4X	4	SSH12.0x80	20	CNA*	29.8	31.2	32	32	30	31.3	32	32
	4	SSH12.0x120	20	CNA*	30.8	34.0	37.0	37.3	30.8	34.0	37.1	37.3
	6	SSH12.0x60	23	CNA*	35.2	37.0	37.7	37.7	35.4	37.1	37.7	37.7
GLE660/4X	6	SSH12.0x80	23	CNA*	35.4	39.1	45.5	46.9	35.4	39.1	45.8	47
	6	SSH12.0x120	23	CNA*	35.4	39.1	47.6	51.3	35.4	39.1	47.6	51.3
	6	SSH12.0x60	26	CNA*	37.7	38.1	38.1	38.1	37.8	38.1	38.1	38.1
GLE720/4X	6	SSH12.0x80	26	CNA*	40	44	47.8	47.8	40	44.1	47.8	47.8
	6	SSH12.0x120	26	CNA*	40.0	44.2	53.6	55.2	40.0	44.2	53.7	55.3
	6	SSH12.0x60	29	CNA*	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4
GLE780/4X	6	SSH12.0x80	29	CNA*	44.6	47.5	48.3	48.3	44.6	47.5	48.3	48.3
	6	SSH12.0x120	29	CNA*	44.7	49.3	56.2	56.3	44.7	49.3	56.2	56.3
	6	SSH12.0x60	32	CNA*	38.5	38.5	38.5	38.5	38.5	38.5	38.5	38.5
GLE840/4X	6	SSH12.0x80	32	CNA*	47.7	48.4	48.4	48.4	47.8	48.4	48.4	48.4
	6	SSH12.0x120	32	CNA*	49.3	54.4	56.4	56.4	49.3	54.4	56.4	56.4
	6	SSH12.0x60	35	CNA*	38.7	38.7	38.7	38.7	38.7	38.7	38.7	38.7
GLE900/4X	6	SSH12.0x80	35	CNA*	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
	6	SSH12.0x120	35	CNA*	53.9	56.6	56.7	56.7	53.9	56.6	56.7	56.7
0.5	8	SSH12.0x60	38	CNA*	51.4	51.4	51.4	51.4	51.4	51.4	51.4	51.4
GLE960/4X	8	SSH12.0x80	38	CNA*	58.5	63.4	64.6	64.6	58.5	63.6	64.6	64.6
	8	SSH12.0x120	38	CNA*	58.5	64.6	75.2	75.3	58.5	64.6	75.2	75.3
0.5	8	SSH12.0x60	41	CNA*	51.7	51.7	51.7	51.7	51.7	51.7	51.7	51.7
GLE1020/4X	8	SSH12.0x80	41	CNA*	62.9	64.9	64.9	64.9	62.9	64.9	64.9	64.9
	8	SSH12.0x120	41	CNA*	63.1	69.7	75.6	75.6	63.1	69.7	75.6	75.6

Page 112 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

		Product capacities - Timber to Timber - Large connector screw											
		Fasteners					racteris				C24		
Blank		Header	J	oist		R	3.k			R	4.k		
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60	
	2	SSH12.0x60	7	CNA*	2.1	2.4	3.0	3.7	9.3	9.5	10.4	10.4	
GLE300/4X	2	SSH12.0x80	7	CNA*	2.6	3	3.8	4.6	9.3	9.5	10.4	10.4	
	2	SSH12.0x120	7	CNA*	2.6	3.1	4.4	5.4	9.3	9.5	10.4	10.4	
	2	SSH12.0x60	9	CNA*	1.8	2.0	2.5	3.1	10.4	10.4	10.4	10.4	
GLE340/4X	2	SSH12.0x80	9	CNA*	2.2	2.5	3.2	3.9	10.4	10.4	10.4	10.4	
	2	SSH12.0x120	9	CNA*	2.6	2.9	3.7	4.6	10.4	10.4	10.4	10.4	
	2	SSH12.0x60	11	CNA*	1.5	1.7	2.2	2.7	10.4	10.4	10.4	10.4	
GLE380/4X	2	SSH12.0x80	11	CNA*	1.9	2.1	2.7	3.3	10.4	10.4	10.4	10.4	
	2	SSH12.0x120	11	CNA*	2.2	2.5	3.2	3.9	10.4	10.4	10.4	10.4	
	4	SSH12.0x60	12	CNA*	3.6	4.0	4.6	5.2	14.8	16.3	19.9	20.8	
GLE440/4X	4	SSH12.0x80	12	CNA*	3.6	4.5	5.7	6.5	14.8	16.3	19.9	20.8	
	4	SSH12.0x120	12	CNA*	3.6	4.5	6.5	7.6	14.8	16.3	19.9	20.8	
	4	SSH12.0x60	15	CNA*	3.5	3.7	4.1	4.6	18.5	20.4	20.8	20.8	
GLE500/4X	4	SSH12.0x80	15	CNA*	4	4.7	5.2	5.7	18.5	20.4	20.8	20.8	
	4	SSH12.0x120	15	CNA*	4.0	5.0	6.0	6.7	18.5	20.4	20.8	20.8	
GLE540/4X	4	SSH12.0x60	17	CNA*	3.7	3.9	4.3	4.6	20.8	20.8	20.8	20.8	
	4	SSH12.0x80	17	CNA*	4.2	4.9	5.3	5.8	20.8	20.8	20.8	20.8	
	4	SSH12.0x120	17	CNA*	4.2	5.3	6.2	6.8	20.8	20.8	20.8	20.8	
	4	SSH12.0x60	20	CNA*	3.6	3.8	4.0	4.3	20.8	20.8	20.8	20.8	
GLE600/4X	4	SSH12.0x80	20	CNA*	4.4	4.7	5.1	5.5	20.8	20.8	20.8	20.8	
	4	SSH12.0x120	20	CNA*	4.4	5.5	5.9	6.4	20.8	20.8	20.8	20.8	
	6	SSH12.0x60	23	CNA*	4.6	5.1	5.4	5.8	28.3	31.2	31.2	31.2	
GLE660/4X	6	SSH12.0x80	23	CNA*	4.6	5.8	6.8	7.3	28.3	31.2	31.2	31.2	
	6	SSH12.0x120	23	CNA*	4.6	5.8	7.9	8.5	28.3	31.2	31.2	31.2	
	6	SSH12.0x60	26	CNA*	4.7	4.9	5.2	5.5	31.2	31.2	31.2	31.2	
GLE720/4X	6	SSH12.0x80	26	CNA*	4.7	6	6.5	6.9	31.2	31.2	31.2	31.2	
	6	SSH12.0x120	26	CNA*	4.7	6.0	7.6	8.1	31.2	31.2	31.2	31.2	
	6	SSH12.0x60	29	CNA*	4.8	5.6	5.8	6.1	31.2	31.2	31.2	31.2	
GLE780/4X	6	SSH12.0x80	29	CNA*	4.8	6.1	7.3	7.7	31.2	31.2	31.2	31.2	
	6	SSH12.0x120	29	CNA*	4.8	6.1	8.5	8.9	31.2	31.2	31.2	31.2	
	6	SSH12.0x60	32	CNA*	4.9	5.3	5.6	5.8	31.2	31.2	31.2	31.2	
GLE840/4X	6	SSH12.0x80	32	CNA*	4.9	6.2	7	7.3	31.2	31.2	31.2	31.2	
	6	SSH12.0x120	32	CNA*	4.9	6.2	8.1	8.5	31.2	31.2	31.2	31.2	
	6	SSH12.0x60	35	CNA*	5.0	5.9	6.1	6.3	31.2	31.2	31.2	31.2	
GLE900/4X	6	SSH12.0x80	35	CNA*	5	6.3	7.7	8	31.2	31.2	31.2	31.2	
	6	SSH12.0x120	35	CNA*	5.0	6.3	9.0	9.3	31.2	31.2	31.2	31.2	
	8	SSH12.0x60	38	CNA*	5.0	6.3	6.8	7.0	41.6	41.6	41.6	41.6	
GLE960/4X	8	SSH12.0x80	38	CNA*	5	6.3	8.5	8.8	41.6	41.6	41.6	41.6	
	8	SSH12.0x120	38	CNA*	5.0	6.3	9.6	10.3	41.6	41.6	41.6	41.6	
	8	SSH12.0x60	41	CNA*	5.1	6.4	7.5	7.7	41.6	41.6	41.6	41.6	
GLE1020/4X	8	SSH12.0x80	41	CNA*	5.1	6.4	9.4	9.7	41.6	41.6	41.6	41.6	
	8	SSH12.0x120	41	CNA*	5.1	6.4	9.7	11.3	41.6	41.6	41.6	41.6	

(1) SSH can be replaced by SSF

The user shall verify the transversal tension in timber which is not included in these capacities.

*Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

GLE/GLI 4 mm fire resistance R30 to EN 13501-2 - Timber to timber connection:

Performance declared: 30 minutes resistance to Fire (R30) to EN 13501-2 with all faces of the hanger exposed to the fire (Table 3). Performance values were determined by a static model developed by SST validated and verified by testing to EN 1365-2 and ETAG 015 by the Assessment Report *BTC 18511FA* issued by the Building Test Centre (UKAS accredited No. 0296 and member of the Fire Test Study Group, FTSP).

Scope of Certification: This certification applies to the following products and sizes GLE/GLI range of 4 mm thick.

Table 1: GLE/GLI (4 mm thickness) Hanger Height (mm)

			Seat Width (mm)										
		90	100	120	140	160	180	200					
	300	105	-	-	-	-	-	-					
<u></u>	340	125	-	-	1	1	1	-					
یا	380	145	140	-	-	-	-	-					
Length (mm)	440	175	170	160	150	140	-	-					
- Bue	500	205	200	190	180	170	-	-					
, Y	540	225	220	210	200	190	-	-					
Blank	600	255	250	240	230	220	-	-					
<u> </u>	660	285	280	270	260	250	1	-					
	720	315	310	300	290	280	-	-					

Service Class: 1 and 2 to Eurocode 5

Fasteners: Fully nailed with CNA4,0x75mm or screwed with CSA5.0x80 (ETA-04/0013)

Timber: Untreated C24 strength class timber to EN338. The joist was exposed on 3 faces (sides and bottom) and the header on 2 faces (side and bottom).

Boundary conditions:

- Header height ≥ Joist height ≥ Hanger height + 10 mm
- Joist end shall be within the header face edges
- Member width ≥ 100 mm
- Gap between members ≤ 3 mm

Any other relevant National minimum requirement shall be fulfilled.

Table 2: Characteristic vertical load bearing capacity R30 to EN 13501-2, $F_{v,Rk,fi}$, in kN for GLE/GLI 4 mm

			:	Seat Wid	dth (mm	1)	
		100	120	140	160	180	200
	300	-	-	-	-	-	-
Ē	340	-	-	-	-	ı	-
Length (mm)	380	1	-	-	-	ı	-
Ţ.	440	2.52	2.52	2.52	2.52	ı	-
bue	500	3.55	3.55	2.52	2.52	-	-
k L	540	4.72	4.72	3.55	3.55	-	-
Blank	600	7.3	7.3	5.98	5.98	-	-
ā	660	8.65	8.65	7.3	7.3	-	-
	720	11.4	11.4	10.03	10.03	-	-

$$egin{aligned} E_{ ext{d,fi}} &\leq R_{ ext{d,30,fi}} \ R_{ ext{d,30,fi}} &= F_{ ext{v,Rk,fi}} \ / \ \gamma_{ ext{M,fi}} \end{aligned}$$

where

E_{d,fi} is the design effect of actions for the fire situation, determined in accordance with EN 1995-1-2.

 $R_{\rm d,30,fi}$ is the design resistance in the fire situation.

 $\gamma_{M,fi}$ is the material safety factor for the fire situation. The value is 1, unless otherwise specify in the National annex.

Table 3: Characteristic tension load R30 to EN 13501-2, R_{4,fi,30} in kN

Article	Seat Width (mm) - R _{4,fi,30} - Timber to Timber									
Code	100	100 120		160						
GLE380	3,5	-	-	-						
GLE440	3,8	3,8	3,8	3,8						
GLE500	4,7	4,7	4,7	4,7						
GLE540	5,3	5,3	5,3	5,3						
GLE600	6,2	6,2	6,2	6,2						
GLE660	7,0	7,0	7,0	7,0						
GLE720	7,9	7,9	7,9	7,9						

Table 4: Characteristic vertical load bearing capacity R30 to EN 13501-2, $F_{v,Rk,fi}$, in kN for GLE/GLI 4 mm, GL24h timber

Timber: Untreated GL24h strength class timber to EN338. The joist was exposed on 3 faces (sides and bottom) and the header on 2 faces (side and bottom).

Boundary conditions:

- Header height ≥ Joist height ≥ Hanger height + 10 mm
- Joist end shall be within the header face edges
- Member width ≥ 90 mm
- Gap between members ≤ 3 mm

			Seat Width (mm)										
		90	100	120	140	160	180	200					
	300	1.6	-	-	-	-	-	-					
<u></u>	340	2.3	-	-	-	-	-	-					
[m	380	3.1	3.1	-	-	-	-	-					
Length (mm)	440	3.9	3.9	3.9	3.9	3.9	1	-					
- Bue	500	5	5	5	5	5	-	-					
Ĺ	540	6.1	6.1	6.1	6.1	6.1	-	-					
Blank	600	8.2	8.2	8.2	8.2	8.2	-	-					
<u> </u>	660	9.7	9.7	9.7	9.7	9.7	-	-					
	720	11.9	11.9	11.9	11.9	11.9	-	-					

Simplified calculation of E_{d,fi} according to Eurocode 5 part 1-2:

$$E_{\rm dfi} = \eta_{\rm fi} E_{\rm d} \tag{2.8}$$

where:

E_d is the design effect of actions for normal temperature design for the fundamental combination of actions, see EN 1990:2002;

 $\eta_{\rm fi}$ is the reduction factor for the design load in the fire situation.

(3) The reduction factor $\eta_{\bar{1}}$ for load combination (6.10) in EN 1990:2002 should be taken as

$$\eta_{\rm fi} = \frac{G_{\rm k} + \psi_{\rm fi} \, Q_{\rm k,1}}{\gamma_{\rm G} \, G_{\rm k} + \gamma_{\rm O,1} \, Q_{\rm k,1}} \tag{2.9}$$

or, for load combinations (6.10a) and (6.10b) in EN 1990:2002, as the smallest value given by the following two expressions

$$\eta_{\rm fi} = \frac{G_{\rm k} + \psi_{\rm fi} \ Q_{\rm k,1}}{\gamma_{\rm G} \ G_{\rm k} + \gamma_{\rm Q,1} \ Q_{\rm k,1}} \tag{2.9a}$$

$$\eta_{\rm fi} = \frac{G_{\rm k} + \psi_{\rm fi} \, Q_{\rm k,1}}{\xi \, \gamma_{\rm G} \, G_{\rm k} + \gamma_{\rm O,1} \, Q_{\rm k,1}} \tag{2.9b}$$

where:

 $Q_{k,1}$ is the characteristic value of the leading variable action;

 G_k is the characteristic value of the permanent action;

γ_G is the partial factor for permanent actions;

 $\gamma_{Q,1}$ is the partial factor for variable action 1;

is the combination factor for frequent values of variable actions in the fire situation, given either by $\psi_{1,1}$ or $\psi_{2,1}$, see EN 1991-1-1; AC_2

is a reduction factor for unfavourable permanent actions G.

GLE fire resistance R30 to EN1363-1:2020 – Timber to timber connection with large connector screw SSH

Performance declared: 30 minutes to fire (R30) to EN1363-1:2020 with all faces of the hanger exposed to fire. Performance values were determined by a static model developed by SST, validated and verified by testing according to EN1363-1:2020 and ETAG015 by the assessment reports FIRES-FR-070-22-AUNE2 and FIRES-FR-162-22-AUNE2 issued by FIRES s.r.o. (accredited testing laboratory n° S-159, EGOLF member).

Scope of certification: This certification applies to the following products and sizes of GLE/4X.

Table 1: GLE/4 hanger height (mm) hanger

Table 2: GLE/4 number of SSH used on each

				Seat \	Width	(mm)		
		90	100	120	140	160	180	200
	300	105	-	-	-	•	-	-
E	340	125	-	-	-	•	-	-
(mm)	380	145	-	-	•	•	-	-
gth	440	175	170	160	150	140	ı	1
Blank Length	500	205	200	190	180	170	160	150
k	540	225	220	210	200	190	180	170
lan	600	255	250	240	230	220	210	200
•	660	285	280	270	260	250	240	230
	720	315	310	300	290	280	270	260

				Seat \	Width	(mm)		
		90	100	120	140	160	180	200
	300	2	-	-	-	-	-	-
Ē	340	2	-	-	-	ı	-	-
Blank Length (mm)	380	2	-	-	-	-	-	-
gth	440	4	4	4	4	4	-	-
enç	500	4	4	4	4	4	4	4
Ā	540	4	4	4	4	4	4	4
lan	600	4	4	4	4	4	4	4
•	660	6	6	6	6	6	6	6
	720	6	6	6	6	6	6	6

Service class: 1 and 2 according to Eurocode 5

Fasteners:

- Fully nailed or screwed with CNA4.0x75 or CSA5.0x80 (ETA-04/0013) in joist
- Screwed with SSH12.0x80 (ETA-21/0670) in header

Timber: Untreated C24 strength class timber to EN338. The joist was exposed on 3 faces (sides and bottom).

Boundary conditions:

- Header height ≥ Joist height ≥ Hanger height + 10 mm
- Joist end shall be within the header face edges
- Member width ≥ 100 mm
- Gap between members ≤ 3 mm

Any other relevant national minimum requirement shall be fulfilled.

Table 3: Characteristic vertical load bearing capacity R30 to EN 1363-1, F_{v,Rk,fi} in kN, C24 timber

			Seat Wid	dth (mm	
		100	120	140	160
	300	-	-	-	-
<u></u>	340	-	-	-	-
l E	380	-	-	-	-
ŧ	440	5	5	5	5
bue	500	6.1	6.1	6.1	6.1
×	540	6.7	6.7	6.7	6.7
Blank Length (mm)	600	6.9	6.9	6.9	6.9
<u> </u>	660	9.9	9.9	9.9	9.9
	720	10.3	10.3	10.3	10.3

E_{d,fi} ≤ R_{d,30,fi}

 $R_{d,30,fi} = F_{v,Rk,fi} / \Upsilon_{M,fi}$

Where:

 $\mathbf{E}_{d,fi}$ is the design effect of actions for fire situation, determined in accordance with EN 1995-1-2

 $R_{d,30,fi}$ is the design resistance in the fire situation

 $\mathbf{Y}_{M,fi}$ is the material safety factor for fire situation. The value is 1, unless otherwise specify in the national annex.

Table 4: Characteristic axial load bearing capacity R30 to EN 1363-1, Fax,Rk,fi in kN, C24 timber

			Seat Wid	Seat Width (mm							
		100	120	140	160						
	300	-	-	-	-						
(u	340	-	-	ı	-						
Blank Length (mm)	380	-	-	1	-						
th (440	2.3	2.3	2.3	2.3						
eng	500	2.3	2.3	2.3	2.3						
k Le	540	2.3	2.3	2.3	2.3						
lanl	600	2.3	2.3	2.3	2.3						
B	660	3.4	3.4	3.4	3.4						
	720	3.4	3.4	3.4	3.4						

E_{d,fi} ≤ R_{d,30,fi}

 $R_{d,30,fi} = F_{ax,Rk,fi} / \Upsilon_{M,fi}$

Where:

 $E_{d,fi}$ is the design effect of actions for fire situation, determined in accordance with EN 1995-1-2

 $R_{d,30,fi}$ is the design resistance in the fire situation

 $\mathbf{Y}_{M,fi}$ is the material safety factor for fire situation. The value is 1, unless otherwise specify in the national annex.

Table 5: Characteristic vertical load bearing capacity R30 to EN 13501-2, $F_{v,Rk,fi}$, in kN for GLE 4 mm, GL24h timber

Timber: Untreated GL24h strength class timber to EN338. The joist was exposed on 3 faces (sides and bottom) and the header on 2 faces (side and bottom).

Boundary conditions:

- Header height ≥ Joist height ≥ Hanger height + 10 mm
- Joist end shall be within the header face edges
- Member width ≥ 90 mm
- Gap between members ≤ 3 mm

			Seat	Width (ı	mm)	
		90	100	120	140	160
	300	2.9	-	-	-	-
<u></u>	340	3.5	-	-	-	-
Blank Length (mm)	380	3.7	3.7	-	-	-
t)	440	5.9	5.6	5.6	5.6	5.6
bue	500	6.9	6.8	6.8	6.8	6.8
, Y	540	7.1	7.1	7.1	7.1	7.1
anl	600	7.2	7.2	7.2	7.2	7.2
ā	660	10.7	10.6	10.6	10.6	10.6
	720	10.8	10.7	10.7	10.7	10.7

E_{d.fi} ≤ R_{d.30.fi}

 $R_{d,30,fi} = F_{v,Rk,fi} / \Upsilon_{M,fi}$

Where:

 $E_{d,fi}$ is the design effect of actions for fire situation, determined in accordance with EN 1995-1-2

R_{d,30,fi} is the design resistance in the fire situation

 $\mathbf{Y}_{\mathbf{M},\mathbf{fi}}$ is the material safety factor for fire situation. The value is 1, unless otherwise specify in the national annex.

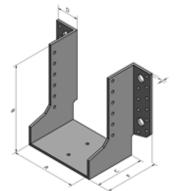
Table 6: Characteristic axial load bearing capacity R30 to EN 1363-1, Fax,Rk,fi in kN, GL24h timber

		l .	Seat	width	(mm)	
		90	100	120	140	160
	300	1.1	•	•	-	-
	340	1.1	-	-	-	-
<u>_</u>	380	1.1	1.1	-	-	-
Blank (mm)	440	2.3	2.3	2.3	2.3	2.3
× (500	2.3	2.3	2.3	2.3	2.3
lan	540	2.3	2.3	2.3	2.3	2.3
œ	600	2.3	2.3	2.3	2.3	2.3
	660	3.4	3.4	3.4	3.4	3.4
	720	3.4	3.4	3.4	3.4	3.4

 $E_{d,fi} \le R_{d,30,fi}$

 $R_{d,30,fi} = F_{ax,Rk,fi} / \Upsilon_{M,fi}$

Where:


E_{d,fi} is the design effect of actions for fire situation, determined in accordance with EN 1995-1-2

R_{d,30,fi} is the design resistance in the fire situation

 $\Upsilon_{M,fi}$ is the material safety factor for fire situation. The value is 1, unless otherwise specify in the national annex.

D16 GLE-AL Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GLE-AL	Steel ref 1 - Steel ref 2	-

Dimensions

		D'	- • • •	•					Но	les	~	
Blank		Dimen	sions [m	mj				Head	der		Jo	ist
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
500/2.5X-AL	161-200	(500-A)/2	90	38.5	95	2.5	18	Ø5	4	Ø14	13	Ø5
540/2.5X-AL	161-240	(540-A)/2	90	38.5	95	2.5	18	Ø5	4	Ø14	13	Ø5
600/2.5X-AL	161-240	(600-A)/2	90	38.5	95	2.5	24	Ø5	4	Ø14	16	Ø5
660/2.5X-AL	161-240	(660-A)/2	90	38.5	95	2.5	28	Ø5	6	Ø14	19	Ø5
720/2.5X-AL	161-240	(720-A)/2	90	38.5	95	2.5	34	Ø5	6	Ø14	22	Ø5
780/2.5X-AL	161-240	(780-A)/2	90	38.5	95	2.5	40	Ø5	6	Ø14	25	Ø5
840/2.5X-AL	161-240	(840-A)/2	90	38.5	95	2.5	46	Ø5	6	Ø14	28	Ø5
900/2.5X-AL	161-240	(900-A)/2	90	38.5	95	2.5	52	Ø5	6	Ø14	31	Ø5
960/2.5X-AL	161-240	(960-A)/2	90	38.5	95	2.5	58	Ø5	6	Ø14	34	Ø5
1020/2.5X-AL	161-240	(1020-A)/2	90	38.5	95	2.5	62	Ø5	8	Ø14	37	Ø5
500/4X-AL	161-200	(500-A)/2	90	40	98	4	18	Ø5	4	Ø14	13	Ø5
540/4X-AL	161-240	(540-A)/2	90	40	98	4	18	Ø5	4	Ø14	13	Ø5
600/4X-AL	161-240	(600-A)/2	90	40	98	4	24	Ø5	4	Ø14	16	Ø5
660/4X-AL	161-240	(660-A)/2	90	40	98	4	28	Ø5	6	Ø14	19	Ø5
720/4X-AL	161-240	(720-A)/2	90	40	98	4	34	Ø5	6	Ø14	22	Ø5
780/4X-AL	161-240	(780-A)/2	90	40	98	4	40	Ø5	6	Ø14	25	Ø5
840/4X-AL	161-240	(840-A)/2	90	40	98	4	46	Ø5	6	Ø14	28	Ø5
900/4X-AL	161-240	(900-A)/2	90	40	98	4	52	Ø5	6	Ø14	31	Ø5
960/4X-AL	161-240	(960-A)/2	90	40	98	4	58	Ø5	6	Ø14	34	Ø5
1020/4X-AL	161-240	(1020-A)/2	90	40	98	4	62	Ø5	8	Ø14	37	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Parameters have to be used with equation in Annex C.

$k_{\text{H},1}$ for Joist Hanger GLE-AL and GLI-AL - Full nailing - F1

						F	ull nailin							
								Model						
	30	0AL	34	0AL	380	DAL	44	0AL	50	0AL	54	0AL	60	0AL
	n _H	n _J												
	-	-	-	-	-	-	-	-	18	13	18	13	24	16
Α	В	kh,1												
162	-	-	-	-	-	-	-	-	169	39,2	189	48,2	219	69,1
164	-	-	-	-	-	-	-	-	168	38,8	188	47,8	218	68,5
166	-	-	-	-	-	-	-	-	167	38,3	187	47,3	217	67,9
168	-	-	-	-	-	-	-	-	166	37,9	186	46,9	216	67,4
170	-	-	-	-	-	-	-	-	165	37,5	185	46,4	215	66,8
172	-	-	-	-	-	-	-	-	164	37,0	184	46,0	214	66,2
174 176	-	-	-	-	-	-	-	-	163	36,6 36,1	183 182	45,5 45,0	213 212	65,6
176		-	-	-	-	-	-	-	162 161	35,7	182	45,0	212	65,0 64,5
180			-	-		-	-	-	160	35,7	180	44,6	210	63,9
182			-		-		<u> </u>		159	34,8	179	43,7	209	63,3
184			-	-	-:-	-		-	158	34,4	179	43,7	209	62,7
186		-	-	-		-			157	34,4	177	43,2	206	62,7
188		-	-	-		-	-		156	33,6	176	42,8	206	61,6
190	-			-		-			155	33,1	175	41,9	205	61,0
192	-	-	-	-	_		-		154	32,7	174	41,4	204	60,5
194	-	-	-	-	-	-	-	-	153	32,3	173	41,0	203	59,9
196	_	-	-	-	_	-	-	-	152	31,8	172	40,6	202	59,3
198	-	-	-	-	-	-	-	-	151	31,4	171	40,1	201	58,8
200	-	-	-	-	-	-	-	-	150	31,0	170	39,7	200	58,2
202	-	-	-	-	-	-	-	-	-	-	169	39,2	199	57,6
204	-	-	-	-	-	-	-	-	-	-	168	38,8	198	57,1
206	-	-	-	-	-	-	-	-	-	-	167	38,3	197	56,5
208	-	-	-	-	-	-	-	-	-	-	166	37,9	196	56,0
210	-	-	-	-	-	-	-	-	-	-	165	37,5	195	55,4
212	-	-	-	-	-	-	-	-	-	-	164	37,0	194	54,8
214	-	-	-	-	-	-	-	-	-	-	163	36,6	193	54,3
216	-	-	-	-	-	-	-	-	-	-	162	36,1	192	53,7
218	-	-	-	-	-	-	-	-	-	-	161	35,7	191	53,2
220	-	-	-	-	-	-	-	-	-	-	160	35,3	190	52,6
222	-	-	-	-	-	-	-	-	-	-	159	34,8	189	52,1
224	-	-	-	-	-	-	-	-	-	-	158	34,4	188	51,5
226	•	-	-	-	-	-	-	-	-	-	157	34,0	187	51,0
228	-	-	-	-	-	-	-	-	· ·	-	156	33,6	186	50,4
230	-	-	-	-	-	-	-	-	-	-	155	33,1	185	49,9
232	-	-	-	-	-	-	-	-	-	-	154	32,7	184	49,4
234	-	-	-	-	-	-	-	-	-	-	153	32,3	183	48,8
236 238	-	-	-	-	-	-	-	-	-	-	152	31,8	182	48,3
	-	-	-	-	-	-	-	-	-	-	151	31,4	181	47,7
240	-	-	-	-	-	-	-	-	-	-	150	31,0	180	47,2

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation.

 $k_{\text{H},1}$ for Joist Hanger GLE-AL and GLI-AL - Full nailing - F1

						F	ull nailin	a						
								Model						
	66	0AL	72	0AL	780	OAL		DAL	900	0AL	96	0AL	102	0AL
	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ
	28	19	34	22	40	25	46	28	52	31	58	34	62	37
Width	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1
162	249	87,8	279	112,7	309	139,8	339	171,8	369	204,8	399	244,1	429	274,4
164	248	87,2	278	112,0	308	138,9	338	170,8	368	203,7	398	242,9	428	273,2
166	247	86,5	277	111,2	307	138,0	337	169,8	367	202,6	397	241,7	427	271,9
168	246	85,9	276	110,4	306	137,1	336	168,8	366	201,5	396	240,5	426	270,6
170	245	85,3	275	109,7	305	136,2	335	167,8	365	200,4	395	239,3	425	269,3
172	244	84,6	274	108,9	304	135,4	334	166,8	364	199,3	394	238,1	424	268,1
174	243	84,0	273	108,1	303	134,5	333	165,8	363	198,2	393	236,9	423	266,8
176	242	83,4	272	107,4	302	133,6	332	164,8	362	197,1	392	235,7	422	265,5
178	241	82,7	271	106,6	301	132,7	331	163,9	361	196,0	391	234,5	421	264,3
180	240	82,1	270	105,9	300	131,9	330	162,9	360	194,9	390	233,3	420	263,0
182	239	81,5	269	105,1	299	131,0	329	161,9	359	193,8	389	232,1	419	261,8
184	238	80,8	268	104,3	298	130,1	328	160,9	358	192,8	388	230,9	418	260,5
186	237	80,2	267	103,6	297	129,3	327	159,9	357	191,7	387	229,7	417	259,2
188	236	79,6	266	102,8	296	128,4	326	159,0	356	190,6	386	228,5	416	258,0
190	235	79,0	265	102,1	295	127,5	325	158,0	355	189,5	385	227,3	415	256,7
192	234	78,3	264	101,3	294	126,7	324	157,0	354	188,4	384	226,1	414	255,5
194	233	77,7	263	100,6	293	125,8	323	156,1	353	187,4	383	224,9	413	254,2
196	232	77,1	262	99,8	292	124,9	322	155,1	352	186,3	382	223,7	412	253,0
198	231	76,5	261	99,1	291	124,1	321	154,1	351	185,2	381	222,6	411	251,7
200	230	75,9	260	98,3	290	123,2	320	153,2	350	184,1	380	221,4	410	250,5
202	229	75,2	259	97,6	289	122,4	319	152,2	349	183,1	379	220,2	409	249,3
204	228	74,6	258	96,8	288	121,5	318	151,2	348	182,0	378	219,0	408	248,0
206	227	74,0	257	96,1	287	120,7	317	150,3	347	180,9	377	217,9	407	246,8
208	226	73,4	256	95,4	286	119,8	316	149,3	346	179,9	376	216,7	406	245,6
210	225	72,8	255	94,6	285	119,0	315	148,4	345	178,8	375	215,5	405	244,3
212	224	72,2	254	93,9	284	118,1	314	147,4	344	177,8	374	214,3	404	243,1
214	223	71,6	253	93,1	283	117,3	313	146,5	343	176,7	373	213,2	403	241,9
216	222	71,0	252	92,4	282	116,5	312	145,5	342	175,7	372	212,0	402	240,6
218	221	70,4	251	91,7	281	115,6	311	144,6	341	174,6	371	210,9	401	239,4
220	220	69,8	250	91,0	280	114,8	310	143,6	340	173,6	370	209,7	400	238,2
222	219	69,2	249	90,2	279	113,9	309	142,7	339	172,5	369	208,5	399	237,0
224	218	68,6	248	89,5	278	113,1	308	141,7	338	171,5	368	207,4	398	235,8
226	217	68,0	247	88,8	277	112,3	307	140,8	337	170,4	367	206,2	397	234,6
228	216	67,4	246	88,1	276	111,5	306	139,9	336	169,4	366	205,1	396	233,3
230	215	66,8	245	87,3	275	110,6	305	138,9	335	168,3	365	203,9	395	232,
232	214	66,2	244	86,6	274	109,8	304	138,0	334	167,3	364	202,8	394	230,
234	213	65,6	243	85,9	273	109,0	303	137,1	333	166,3	363	201,7	393	229,
236	212	65,0	242	85,2	272	108,2	302	136,1	332	165,2	362	200,5	392	228,
238	211	64,4	241	84,5	271	107,3	301	135,2	331	164,2	361	199,4	391	227,3
240	210	63,8	240	83,8	270	106,5	300	134,3	330	163,2	360	198,2	390	226,

Page 120 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07 In the case of intermediate width, $k_{H,1}$ can be calculated by linear interpolation.

 $k_{\text{H},1}$ for Joist Hanger GLE-AL and GLI-AL - Partial nailing - F1

						Pa	rtial naili	ing						
								Model						
ſ	30	0AL	34	0AL	38	0AL	44	0AL	50	0AL	54	0AL	600	AL
	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ						
L	-	-	-	-	-	-	-	-	8	7	8	7	10	8
Width	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1
162	-	-	-	-	-	-	-	-	169	19,8	189	24,2	219	33,4
164	-	-	-	-	-	-	-	-	168	19,6	188	24,0	218	33,1
166	-	-	-	-	-	-	-	-	167	19,4	187	23,7	217	32,9
168	-	-	-	-	-	-	-	-	166	19,2	186	23,5	216	32,6
170 172	-	-	-	-	-	-	- :	-	165 164	19,0 18,7	185 184	23,3 23,1	215 214	32,3 32,1
174	<u> </u>	-	-	- :	- :	-		-	163	18,5	183	22,9	213	31,8
174		-	-		-	-		-	162	18,3	182	22,9	212	31,5
178		-				-		-	161	18,1	181	22,4	211	31,3
180		-	-	-	-	-	_	-	160	17,9	180	22,2	210	31,0
182	-	-	-	-	-	-	-	-	159	17,7	179	22,0	209	30,7
184	-	-	-	-	-	-	-	-	158	17,5	178	21,8	208	30,5
186	-	-	-	-	-	-	-	-	157	17,3	177	21,5	207	30,2
188	-	-	-	-	-	-	-	-	156	17,1	176	21,3	206	29,9
190	-	-	-	-	-	-	-	-	155	16,9	175	21,1	205	29,7
192	-	-	-	-	-		-	-	154	16,6	174	20,9	204	29,4
194	-	-	-	-	-	-	-	-	153	16,4	173	20,7	203	29,2
196	-	-	-	-	-	-	-	-	152	16,2	172	20,5	202	28,9
198	-	-	-	-	-	-	-	-	151	16,0	171	20,2	201	28,6
200	-	-	-	-	-	-	-	-	150	15,8	170	20,0	200	28,4
202	-	-	-	-	-	-	-	-	-	-	169	19,8	199	28,1
204	-	-	-	-	-	-	-	-	-	-	168	19,6	198	27,8
206	-	-	-	-	-	-	-	-	-	-	167	19,4	197	27,6
208	-	-	-	-	-	-	-	-	-	-	166 165	19,2	196	27,3 27,1
210 212		-	-	- :	-	-	- :	-	-	-	164	19,0 18,7	195 194	26,8
214		-	-		-	-		-	-	-	163	18,5	193	26,5
214		-	-			-		-	- : -	-	162	18,3	193	26,3
218		-	-	-	-	-	_	-	-	-	161	18,1	191	26,0
220	-	-	-	-	-	-	-	-	-	-	160	17,9	190	25,8
222	-	-	-	-	-	-	-	-	-	-	159	17,7	189	25,5
224	-	-	-	-	-	-	-	-	-	-	158	17,5	188	25,3
226		-	-	-	-	-	-	-	-	-	157	17,3	187	25,0
228	-	-	-	-	-	-	-	-	-	-	156	17,1	186	24,7
230	-	-	-	-	-	-	-	-	-	-	155	16,9	185	24,5
232	-	-	-	-	-	-	-	-	-	-	154	16,6	184	24,2
234	-	-	-	-	-	-	-	-	-	-	153	16,4	183	24,0
236	-	-	-	-	-	-	-	-	-	-	152	16,2	182	23,7
238	-	-	-	-	-	-	-	-	-	-	151	16,0	181	23,5
240	-	-	-	-	-	-	-	-	-	-	150	15,8	180	23,2

In the case of intermediate width, $k_{H,1}$ can be calculated by linear interpolation.

$k_{\text{H,1}}$ for Joist Hanger GLE-AL and GLI-AL - Partial nailing - F1

						Pa	rtial nail	ing						
							Blank	Model						
	660	DAL	720	0AL	780	OAL	84	0AL	900	DAL	96	60AL	102	OAL
	n _H	nJ	n _H	nJ										
	12	10	14	12	18	13	20	14	24	16	26	18	28	19
Width	В	kh,1	В	kh,1										
162	249	39,9	279	51,8	309	81,6	339	81,3	369	99,1	399	117,2	429	129,2
164	248	39,6	278	51,5	308	81,2	338	80,9	368	98,6	398	116,6	428	128,6
166	247	39,3	277	51,1	307	80,7	337	80,4	367	98,1	397	116,1	427	128,0
168	246	39,0	276	50,8	306	80,3	336	79,9	366	97,5	396	115,5	426	127,4
170 172	245 244	38,7 38,4	275 274	50,4 50,1	305 304	79,8 79,4	335 334	79,5 79,0	365 364	97,0 96,5	395 394	114,9 114,3	425 424	126,8 126,3
174	244	38,1	273	49,8	303	79,4	333	78,6	363	95,9	393	113,8	424	125,7
174	243	37,8	272	49,4	302	78,5	332	78,1	362	95,9	392	113,8	422	125,7
178	241	37,5	271	49,1	301	78,1	331	77,6	361	94,9	391	112,6	421	124,5
180	240	37,2	270	48,7	300	77,6	330	77,2	360	94,4	390	112.1	420	123,9
182	239	36,9	269	48,4	299	77,2	329	76,7	359	93,8	389	111,5	419	123,3
184	238	36,7	268	48,1	298	76,8	328	76,3	358	93,3	388	110,9	418	122,7
186	237	36,4	267	47,7	297	76,3	327	75,8	357	92,8	387	110,4	417	122,1
188	236	36,1	266	47,4	296	75,9	326	75,4	356	92,3	386	109,8	416	121,5
190	235	35,8	265	47,1	295	75,5	325	74,9	355	91,8	385	109,2	415	120,9
192	234	35,5	264	46,7	294	75,0	324	74,5	354	91,2	384	108,7	414	120,4
194	233	35,2	263	46,4	293	74,6	323	74,0	353	90,7	383	108,1	413	119,8
196	232	34,9	262	46,1 45,7	292	74,2	322	73,6	352 351	90,2	382 381	107,5 107,0	412	119,2
198 200	231 230	34,6 34,3	261 260	45,7 45,4	291 290	73,7 73,3	321 320	73,1 72,7	351	89,7 89,2	380	107,0	411 410	118,6 118,0
200	229	34,0	259	45,4 45,1	289	73,3	319	72,7	349	88,7	379	105,4	409	117,4
202	228	33,8	258	44,7	288	72,4	318	71,8	348	88,1	378	105,9	408	116,9
206	227	33,5	257	44,4	287	72,0	317	71,3	347	87,6	377	104.7	407	116,3
208	226	33,2	256	44,1	286	71,6	316	70,9	346	87,1	376	104,2	406	115,7
210	225	32,9	255	43,7	285	71,1	315	70,4	345	86,6	375	103,6	405	115,1
212	224	32,6	254	43,4	284	70,7	314	70,0	344	86,1	374	103,1	404	114,6
214	223	32,3	253	43,1	283	70,3	313	69,5	343	85,6	373	102,5	403	114,0
216	222	32,1	252	42,8	282	69,8	312	69,1	342	85,1	372	102,0	402	113,4
218	221	31,8	251	42,4	281	69,4	311	68,6	341	84,6	371	101,4	401	112,8
220	220	31,5	250	42,1	280	69,0	310	68,2	340	84,1	370	100,9	400	112,3
222	219	31,2	249	41,8	279	68,6	309	67,8	339	83,6	369	100,3	399	111,7
224	218	30,9	248	41,4	278	68,1	308	67,3	338	83,1	368	99,8	398	111,1
226 228	217 216	30,7 30,4	247 246	41,1	277 276	67,7	307 306	66,9	337 336	82,6 82,0	367 366	99,2	397 396	110,6
228	216	30,4	246	40,8 40,5	276	67,3 66,9	306	66,4 66,0	336	82,0 81,5	365	98,7 98,1	396	110,0 109,4
232	214	29,8	245	40,5	274	66,4	304	65,6	334	81,0	364	97,6	394	109,4
234	213	29,6	244	39,8	273	66,0	303	65,1	333	80,6	363	97,0	393	108,3
236	212	29,3	243	39,5	272	65,6	302	64,7	332	80,1	362	96,5	392	100,3
238	211	29,0	241	39,2	271	65,2	301	64,3	331	79,6	361	95,9	391	107,7
240	210	28,7	240	38,9	270	64,7	300	63,8	330	79,1	360	95,4	390	106,6

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation.

 $k_{\text{H,2}} \, \text{for GLE-AL}$ and GLI-AL - Full or partial nailing - F2

Blank	Total numb		k	H2
	Full nailing	Partial nailing	Full nailing	Partial nailing
500AL	18	8	19,1	8,8
540AL	18	8	19,1	8,8
600AL	24	10	30,4	12,5
660AL	28	12	42,2	18,8
720AL	34	14	57,5	23,4
780AL	40	18	76,9	35,4
840AL	46	20	98,4	42,8
900AL	52	24	122,8	58,2
960AL	58	26	150,1	66,2
1020AL	62	28	173,5	80,4

Page 122 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

Characteristic capacities for GLE/2.5X-AL - with connector screw SSH/SSF without pre drilling

			Pro	oduct ca	pacities -	Timber to	Timber - I	Large cor	nector scr	ew		
		Fastener	s				Characte	ristic cap	acities - Ti	mber C24		
Blank		Header	J	oist		R ₁	l.k			R ₂	.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
CLEGO AL/2 EV	4	SSH12.0x60	13	CNA*	20,6	21,5	22,7	22,9	20,8	21,6	22,7	22,9
GLE500-AL/2.5X	4	SSH12.0x120	13	CNA*	21.6	23.8	26.6	26.9	21.6	23.8	26.7	27.0
CL F 40 AL /2 EV	4	SSH12.0x60	13	CNA*	20,6	21,5	22,7	22,9	20,8	21,6	22,7	22,9
GLE540-AL/2.5X	4	SSH12.0x120	13	CNA*	21.6	23.8	26.6	26.9	21.6	23.8	26.7	27.0
GLE600-AL/2.5X	4	SSH12.0x60	16	CNA*	23,2	23,6	23,6	23,6	23,3	23,6	23,6	23,6
GLE600-AL/2.5X	4	SSH12.0x120	16	CNA*	26.5	27.6	28.2	28.2	26.5	27.7	28.2	28.2
GLE660-AL/2.5X	6	SSH12.0x60	19	CNA*	31,4	33,3	35,1	35,1	31,5	33,6	35,1	35,1
GLE000-AL/2.5X	6	SSH12.0x120	19	CNA*	31.5	34.8	40.9	41.4	31.5	34.8	41.1	41.5
GLE720-AL/2.5X	6	SSH12.0x60	22	CNA*	34,7	35,6	35,7	35,7	34,9	35,6	35,7	35,7
GLE / 20-AL/2.5X	6	SSH12.0x120	22	CNA*	36.5	40.2	42.6	42.6	36.5	40.2	42.6	42.6
GLE780-AL/2.5X	6	SSH12.0x60	25	CNA*	36,3	36,3	36,3	36,3	36,3	36,3	36,3	36,3
GLE / 60-AL/2.5X	6	SSH12.0x120	25	CNA*	41.5	43.1	43.3	43.3	41.5	43.1	43.3	43.3
GLE840-AL/2.5X	6	SSH12.0x60	28	CNA*	36,4	36,4	36,4	36,4	36,4	36,4	36,4	36,4
GLE040-AL/2.5X	6	SSH12.0x120	28	CNA*	43.4	43.5	43.5	43.5	43.4	43.5	43.5	43.5
GLE900-AL/2.5X	6	SSH12.0x60	31	CNA*	36,7	36,7	36,7	36,7	36,7	36,7	36,7	36,7
GLE900-AL/2.5X	6	SSH12.0x120	31	CNA*	43.8	43.8	43.8	43.8	43.8	43.8	43.8	43.8
GLE960-AL/2.5X	6	SSH12.0x60	34	CNA*	36,8	36,8	36,8	36,8	36,8	36,8	36,8	36,8
GLE90U-AL/2.5X	6	SSH12.0x120	34	CNA*	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0
GLE1020-AL/2.5X	8	SSH12.0x60	37	CNA*	49,0	49,0	49,0	49,0	49,0	49,0	49,0	49,0
GLE 1020-AL/2.5X	8	SSH12.0x120	37	CNA*	58.4	58.5	58.5	58.5	58.4	58.5	58.5	58.5

			Pr	oduct car	pacities - T	imber to	Timber - L	arge conr	nector scr	ew		
		Fastene								imber C24		
Blank		Header	J	Joist		R	3.k			R	4.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
OLEGO AL/OEV	4	SSH12.0x60	13	CNA*	7,4	8,9	10,6	10,6	10,0	10,0	10,0	10,0
GLE500-AL/2.5X	4	SSH12.0x120	13	CNA*	7.4	8.9	11.6	12.6	10.0	10.0	10.0	10.0
GLE540-AL/2.5X	4	SSH12.0x60	13	CNA*	7,4	8,9	9,7	9,7	10,0	10,0	10,0	10,0
GLE340-AL/2.3A	4	SSH12.0x120	13	CNA*	7.4	8.9	11.6	11.6	10.0	10.0	10.0	10.0
GLE600-AL/2.5X	4	SSH12.0x60	16	CNA*	8,2	8,2	8,2	8,2	10,0	10,0	10,0	10,0
GLEOUU-AL/2.5A	4	SSH12.0x120	16	CNA*	9.0	9.7	9.7	9.7	10.0	10.0	10.0	10.0
GLE660-AL/2.5X	6	SSH12.0x60	19	CNA*	10,4	10,8	10,8	10,8	15,0	15,0	15,0	15,0
GLEDOU-AL/2.5A	6	SSH12.0x120	19	CNA*	10.4	12.4	12.9	12.9	15.0	15.0	15.0	15.0
GLE720-AL/2.5X	6	SSH12.0x60	22	CNA*	9,5	9,5	9,5	9,5	15,0	15,0	15,0	15,0
GLE / ZU-AL/Z.5A	6	SSH12.0x120	22	CNA*	11.3	11.3	11.3	11.3	15.0	15.0	15.0	15.0
GLE780-AL/2.5X	6	SSH12.0x60	25	CNA*	9,3	9,3	9,3	9,3	15,0	15,0	15,0	15,0
GLE / 60-AL/2.5A	6	SSH12.0x120	25	CNA*	11.2	11.2	11.2	11.2	15.0	15.0	15.0	15.0
GLE840-AL/2.5X	6	SSH12.0x60	28	CNA*	8,4	8,4	8,4	8,4	15,0	15,0	15,0	15,0
GLE040-AL/2.5A	6	SSH12.0x120	28	CNA*	10.0	10.0	10.0	10.0	15.0	15.0	15.0	15.0
GLE900-AL/2.5X	6	SSH12.0x60	31	CNA*	8,5	8,5	8,5	8,5	15,0	15,0	15,0	15,0
GLESUU-AL/2.5A	6	SSH12.0x120	31	CNA*	10.2	10.2	10.2	10.2	15.0	15.0	15.0	15.0
GLE960-AL/2.5X	6	SSH12.0x60	34	CNA*	8,0	8,0	8,0	8,0	15,0	15,0	15,0	15,0
GLE900-AL/2.3A	6	SSH12.0x120	34	CNA*	9.5	9.5	9.5	9.5	15.0	15.0	15.0	15.0
GLE1020-AL/2.5X	8	SSH12.0x60	37	CNA*	9,8	9,8	9,8	9,8	20,0	20,0	20,0	20,0
GLE 1020-AL/2.3A	8	SSH12.0x120	37	CNA*	11.7	11.7	11.7	11.7	20.0	20.0	20.0	20.0

The user shall verify the transversal tension in timber which is not included in these capacities.

*Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

There is no improvement of the characteristic values between SSH12.0x60 and SSH12.0x100 without pre drilling.

Characteristic capacities for GLE/2.5X-AL - with connector screw SSH/SSF with pre drilling

			Pro	oduct ca	pacities -	Timber to	Timber -	Large cor	nector sci	rew		
		Fastener	S				Characte	ristic cap	acities - Ti	mber C24		
Blank		Header	J	oist		R	l.k			R ₂	!.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
	4	SSH12.0x60	13	CNA*	21.2	22.2	23.6	23.9	21.3	22.4	23.7	23.9
GLE500-AL/2.5X	4	SSH12.0x80	13	CNA*	21.5	23.7	26.9	27.7	21.5	23.7	27.2	27.9
	4	SSH12.0x120	13	CNA*	21.5	23.7	28.8	30.6	21.5	23.7	28.8	30.6
	4	SSH12.0x60	13	CNA*	21.2	22.2	23.6	23.9	21.3	22.4	23.7	23.9
GLE540-AL/2.5X	4	SSH12.0x80	13	CNA*	21.5	23.7	26.9	27.7	21.5	23.7	27.2	27.9
	4	SSH12.0x120	13	CNA*	21.5	23.7	28.8	30.6	21.5	23.7	28.8	30.6
	4	SSH12.0x60	16	CNA*	24	24.6	24.8	24.8	24.2	24.6	24.8	24.8
GLE600-AL/2.5X	4	SSH12.0x80	16	CNA*	26.3	28.1	30.5	30.9	26.5	28.4	30.6	31
	4	SSH12.0x120	16	CNA*	26.5	29.2	34.4	35.1	26.5	29.2	34.7	35.4
	6	SSH12.0x60	19	CNA*	31.5	34.2	36.6	36.8	31.5	34.4	36.6	36.8
GLE660-AL/2.5X	6	SSH12.0x80	19	CNA*	31.5	34.7	41.4	43	31.5	34.7	41.8	43.4
	6	SSH12.0x120	19	CNA*	31.5	34.7	42.1	44.8	31.5	34.7	42.1	44.8
	6	SSH12.0x60	22	CNA*	35.7	37	37.4	37.4	35.9	37.1	37.4	37.4
GLE720-AL/2.5X	6	SSH12.0x80	22	CNA*	36.5	40.2	45.8	46.7	36.5	40.2	46	46.7
	6	SSH12.0x120	22	CNA*	36.5	40.2	48.8	51.7	36.5	40.2	48.8	51.9
	6	SSH12.0x60	25	CNA*	37.9	38	38	38	37.9	38	38	38
GLE780-AL/2.5X	6	SSH12.0x80	25	CNA*	41.4	45.1	47.8	47.8	41.4	45.2	47.8	47.8
	6	SSH12.0x120	25	CNA*	41.4	45.7	54.5	55.4	41.4	45.7	54.5	55.4
	6	SSH12.0x60	28	CNA*	38.2	38.2	38.2	38.2	38.2	38.2	38.2	38.2
GLE840-AL/2.5X	6	SSH12.0x80	28	CNA*	45.7	47.8	48	48	46	47.8	48	48
	6	SSH12.0x120	28	CNA*	46.4	51.2	55.9	55.9	46.4	51.2	55.9	55.9
	6	SSH12.0x60	31	CNA*	38.5	38.5	38.5	38.5	38.5	38.5	38.5	38.5
GLE900-AL/2.5X	6	SSH12.0x80	31	CNA*	48.2	48.4	48.4	48.4	48.2	48.4	48.4	48.4
	6	SSH12.0x120	31	CNA*	51.4	55.7	56.4	56.4	51.4	55.7	56.4	56.4
	6	SSH12.0x60	34	CNA*	38.6	38.6	38.6	38.6	38.6	38.6	38.6	38.6
GLE960-AL/2.5X	6	SSH12.0x80	34	CNA*	48.5	48.5	48.5	48.5	48.5	48.5	48.5	48.5
	6	SSH12.0x120	34	CNA*	55.8	56.6	56.6	56.6	55.9	56.6	56.6	56.6
	8	SSH12.0x60	37	CNA*	51.4	51.4	51.4	51.4	51.4	51.4	51.4	51.4
GLE1020-AL/2.5X	8	SSH12.0x80	37	CNA*	61.3	64.5	64.5	64.5	61.3	64.5	64.5	64.5
	8	SSH12.0x120	37	CNA*	61.4	67.7	75.2	75.2	61.4	67.7	75.2	75.2

Page 124 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

			Pr	oduct cap	acities - T	imber to	Timber - L	arge conr	ector scr	ew		
		Fastene	rs				Characte	ristic capa	cities - Ti	mber C24		
Blank		Header	J	loist		R	3.k			R	4.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
	4	SSH12.0x60	13	CNA*	7.4	8.8	11.1	11.1	10	10	10	10
GLE500-AL/2.5X	4	SSH12.0x80	13	CNA*	7.4	8.8	11.6	13.9	10	10	10	10
	4	SSH12.0x120	13	CNA*	7.4	8.8	11.6	14.1	10	10	10	10
	4	SSH12.0x60	13	CNA*	7.4	8.8	10.1	10.1	10	10	10	10
GLE540-AL/2.5X	4	SSH12.0x80	13	CNA*	7.4	8.8	11.6	12.7	10	10	10	10
	4	SSH12.0x120	13	CNA*	7.4	8.8	11.6	14.1	10	10	10	10
	4	SSH12.0x60	16	CNA*	8.5	8.5	8.5	8.5	10	10	10	10
GLE600-AL/2.5X	4	SSH12.0x80	16	CNA*	8.9	10.6	10.7	10.7	10	10	10	10
	4	SSH12.0x120	16	CNA*	8.9	10.6	12.5	12.5	10	10	10	10
	6	SSH12.0x60	19	CNA*	10.3	11.2	11.2	11.2	15	15	15	15
GLE660-AL/2.5X	6	SSH12.0x80	19	CNA*	10.3	12.3	14.1	14.1	15	15	15	15
	6	SSH12.0x120	19	CNA*	10.3	12.3	16	16.5	15	15	15	15
	6	SSH12.0x60	22	CNA*	9.9	9.9	9.9	9.9	15	15	15	15
GLE720-AL/2.5X	6	SSH12.0x80	22	CNA*	11.7	12.5	12.5	12.5	15	15	15	15
	6	SSH12.0x120	22	CNA*	11.7	13.8	14.6	14.6	15	15	15	15
	6	SSH12.0x60	25	CNA*	9.8	9.8	9.8	9.8	15	15	15	15
GLE780-AL/2.5X	6	SSH12.0x80	25	CNA*	12.3	12.3	12.3	12.3	15	15	15	15
	6	SSH12.0x120	25	CNA*	12.9	14.3	14.3	14.3	15	15	15	15
	6	SSH12.0x60	28	CNA*	8.8	8.8	8.8	8.8	15	15	15	15
GLE840-AL/2.5X	6	SSH12.0x80	28	CNA*	11	11	11	11	15	15	15	15
	6	SSH12.0x120	28	CNA*	12.9	12.9	12.9	12.9	15	15	15	15
	6	SSH12.0x60	31	CNA*	8.9	8.9	8.9	8.9	15	15	15	15
GLE900-AL/2.5X	6	SSH12.0x80	31	CNA*	11.2	11.2	11.2	11.2	15	15	15	15
	6	SSH12.0x120	31	CNA*	13	13	13	13	15	15	15	15
	6	SSH12.0x60	34	CNA*	8.3	8.3	8.3	8.3	15	15	15	15
GLE960-AL/2.5X	6	SSH12.0x80	34	CNA*	10.5	10.5	10.5	10.5	15	15	15	15
	6	SSH12.0x120	34	CNA*	12.2	12.2	12.2	12.2	15	15	15	15
	8	SSH12.0x60	37	CNA*	10.3	10.3	10.3	10.3	20	20	20	20
GLE1020-AL/2.5X	8	SSH12.0x80	37	CNA*	12.9	12.9	12.9	12.9	20	20	20	20
	8	SSH12.0x120	37	CNA*	15	15	15	15	20	20	20	20

Page 125 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

Characteristic capacities for GLE/4X-AL - with connector screw SSH/SSF without pre drilling

			Pro	oduct cap	pacities -	Γimber to	Timber - I	arge con	nector sci	rew		
		Fastener	'S				Characte	ristic capa	cities - Ti	mber C24		
Blank		Header	J	oist		R	1.k			R	2.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
GLE500-AL/4X	4	SSH12.0x60	13	CNA*	17,7	18,2	18,5	18,5	17,8	18,2	18,5	18,5
GLESUU-AL/4X	4	SSH12.0x120	13	CNA*	20.0	22.1	26.1	26.6	20.0	22.1	26.2	26.7
CLEE40 AL/4V	4	SSH12.0x60	13	CNA*	17,7	18,2	18,5	18,5	17,8	18,2	18,5	18,5
GLE540-AL/4X	4	SSH12.0x120	13	CNA*	20.0	22.1	26.1	26.6	20.0	22.1	26.2	26.7
GLE600-AL/4X	4	SSH12.0x60	16	CNA*	19,0	19,0	19,0	19,0	19,0	19,0	19,0	19,0
GLE000-AL/4A	4	SSH12.0x120	16	CNA*	24.6	26.9	28.1	28.2	24.6	27.1	28.1	28.2
CLEGGO AL /AV	6	SSH12.0x60	19	CNA*	27,5	28,1	28,3	28,3	27,6	28,2	28,3	28,3
GLE660-AL/4X	6	SSH12.0x120	19	CNA*	29.2	32.3	39.3	40.9	29.2	32.3	39.3	41.1
GLE720-AL/4X	6	SSH12.0x60	22	CNA*	28,8	28,8	28,8	28,8	28,8	28,8	28,8	28,8
GLE720-AL/4A	6	SSH12.0x120	22	CNA*	33.9	37.4	42.3	42.6	33.9	37.4	42.3	42.6
GLE780-AL/4X	6	SSH12.0x60	25	CNA*	29,2	29,2	29,2	29,2	29,2	29,2	29,2	29,2
GLE/80-AL/4X	6	SSH12.0x120	25	CNA*	38.5	42.3	43.3	43.3	38.5	42.3	43.3	43.3
GLE840-AL/4X	6	SSH12.0x60	28	CNA*	29,4	29,4	29,4	29,4	29,4	29,4	29,4	29,4
GLE04U-AL/4A	6	SSH12.0x120	28	CNA*	42.7	43.5	43.5	43.5	42.8	43.5	43.5	43.5
GLE900-AL/4X	6	SSH12.0x60	31	CNA*	29,6	29,6	29,6	29,6	29,6	29,6	29,6	29,6
GLE900-AL/4A	6	SSH12.0x120	31	CNA*	43.8	43.8	43.8	43.8	43.8	43.8	43.8	43.8
GLE960-AL/4X	6	SSH12.0x60	34	CNA*	29,7	29,7	29,7	29,7	29,7	29,7	29,7	29,7
GLE90U-AL/4X	6	SSH12.0x120	34	CNA*	44.0	44.0	44.0	44.0	44.0	44.0		
GLE1020-AL/4X	8	SSH12.0x60	37	CNA*	39,5	39,5	39,5	39,5	39,5	39,5	39,5	39,5
GLE 1020-AL/4X	8	SSH12.0x120	37	CNA*	57.0	58.5	58.5	58.5	57.0	58.5	58.5	58.5

			Pr	oduct cap	acities - T	imber to	Timber - L	arge conr	nector scr	ew		
		Fastene	rs				Characte	ristic capa	acities - Ti	mber C24		
Blank		Header	J	loist		R	3.k			R	4.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
CLEGO AL/AV	4	SSH12.0x60	13	CNA*	7,3	8,2	8,2	8,2	16.0	17.7	20.8	20.8
GLE500-AL/4X	4	SSH12.0x120	13	CNA*	7.3	8.8	11.5	12.1	16.0	17.7	20.8	20.8
GLE540-AL/4X	4	SSH12.0x60	13	CNA*	7,3	7,5	7,5	7,5	16.0	17.7	20.8	20.8
GLE540-AL/4A	4	SSH12.0x120	13	CNA*	7.3	8.8	11.1	11.1	16.0	17.7	20.8	20.8
GLE600-AL/4X	4	SSH12.0x60	16	CNA*	6,3	6,3	6,3	6,3	19.7	20.8	20.8	20.8
GLE000-AL/4A	4	SSH12.0x120	16	CNA*	8.8	9.4	9.4	9.4	19.7	20.8	20.8	20.8
GLE660-AL/4X	6	SSH12.0x60	19	CNA*	8,4	8,4	8,4	8,4	23.4	25.8	31.2	31.2
GLE000-AL/4A	6			CNA*	10.2	12.1	12.4	12.4	23.4	25.8	31.2	31.2
GLE720-AL/4X	6	SSH12.0x60	22	CNA*	7,4	7,4	7,4	7,4	27.1	29.9	31.2	31.2
GLE720-AL/4A	6	SSH12.0x120	22	CNA*	11.0	11.0	11.0	11.0	27.1	29.9	31.2	31.2
GLE780-AL/4X	6	SSH12.0x60	25	CNA*	7,3	7,3	7,3	7,3	30.8	31.2	31.2	31.2
GLE760-AL/4A	6	SSH12.0x120	25	CNA*	10.9	10.9	10.9	10.9	30.8	31.2	31.2	31.2
GLE840-AL/4X	6	SSH12.0x60	28	CNA*	6,6	6,6	6,6	6,6	31.2	31.2	31.2	31.2
GLE640-AL/4A	6	SSH12.0x120	28	CNA*	9.8	9.8	9.8	9.8	31.2	31.2	31.2	31.2
GLE900-AL/4X	6	SSH12.0x60	31	CNA*	6,7	6,7	6,7	6,7	31.2	31.2	31.2	31.2
GLE900-AL/4A	6	SSH12.0x120	31	CNA*	9.9	9.9	9.9	9.9	31.2	31.2	31.2	31.2
GLE960-AL/4X	6	SSH12.0x60	34	CNA*	6,3	6,3	6,3	6,3	31.2	31.2	31.2	31.2
GLE90U-AL/4A	6	SSH12.0x120	34	CNA*	9.3	9.3	9.3	9.3	31.2	31.2	31.2	31.2
GLE1020-AL/4X	8	SSH12.0x60	37	CNA*	7,8	7,8	7,8	7,8	41.6	41.6	41.6	41.6
GLE 1020-AL/4X	8	SSH12.0x120	37	CNA*	11.5	11.5	11.5	11.5	41.6	41.6	41.6	41.6

⁽¹⁾SSH can be replaced by SSF

The user shall verify the transversal tension in timber which is not included in these capacities.

*Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

There is no improvement of the characteristic values between SSH12.0x60 and SSH12.0x100 without pre drilling.

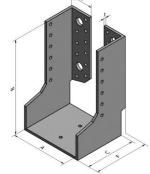
Characteristic capacities for GLE/4X-AL - with connector screw SSH/SSF with pre drilling

			Pro	oduct cap	apacities - Timber to Timber - Large connector screw											
		Fastener	s				Characte	ristic capa	cities - Ti	mber C24						
Blank		Header	J	oist		R	1.k			R	2.k					
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40		4.0x60				
GLE500-AL/4X	4	SSH12.0x60	13	CNA*	20.0	21.4	23.2	23.6	20.0	21.6	23.3	23.7				
GLESUU-AL/4X	4	SSH12.0x120	13	CNA*	20.0	22.1	26.9	29.0	20.0	22.1	26.9	29.0				
GLE540-AL/4X	4	SSH12.0x60	13	CNA*	20.0	21.4	23.2	23.6	20.0	21.6	23.3	23.7				
GLES40-AL/4X	4	SSH12.0x120	13	CNA*	20.0	22.1	26.9	29.0	20.0	22.1	26.9	29.0				
GLE600-AL/4X	4	SSH12.0x60	16	CNA*	23.3	24.1	24.8	24.8	23.6	24.3	24.8	24.8				
GLE600-AL/4X	4	SSH12.0x120	16	CNA*	24.6	27.2	33.0	34.4	24.6	27.2	33.1	34.7				
GLE660-AL/4X	6	SSH12.0x60	19	CNA*	29.2	32.3	36.0	36.6	29.2	32.3	36.2	36.7				
GLE000-AL/4X	6	SSH12.0x120			29.2	32.3	39.3	42.4	29.2	32.3	39.3	42.4				
GLE720-AL/4X	6	SSH12.0x60	22	CNA*	33.9	36.1	37.4	37.4	33.9	36.3	37.4	37.4				
GLE720-AL/4X	6	SSH12.0x120	22	CNA*	33.9	37.4	45.5	49.1	33.9	37.4	45.5	49.1				
GLE780-AL/4X	6	SSH12.0x60	25	CNA*	37.2	38.0	38.1	38.1	37.3	38.0	38.1	38.1				
GLE700-AL/4X	6	SSH12.0x120	25	CNA*	38.5	42.5	51.7	54.5	38.5	42.5	51.7	54.6				
GLE840-AL/4X	6	SSH12.0x60	28	CNA*	38.2	38.2	38.2	38.2	38.2	38.2	38.2	38.2				
GLE040-AL/4X	6	SSH12.0x120	28	CNA*	43.1	47.6	55.5	56.0	43.1	47.6	55.6	56.0				
GLE900-AL/4X	6	SSH12.0x60	31	CNA*	38.5	38.5	38.5	38.5	38.5	38.5	38.5	38.5				
GLE900-AL/4A	6	SSH12.0x120	31	CNA*	47.7	52.7	56.4	56.4	47.7	52.7	56.4	56.4				
GLE960-AL/4X	6	SSH12.0x60	34	CNA*	38.7	38.7	38.7	38.7	38.7	38.7	38.7	38.7				
GLE900-AL/4A	6	SSH12.0x120	34	CNA*	52.4	56.2	56.6	56.6	52.4	56.3	56.6	56.6				
GLE1020-AL/4X	8	SSH12.0x60	37	CNA*	51.4	51.4	51.4	51.4	51.4	51.4	51.4	51.4				
GLE 1020-AL/4X	8	SSH12.0x120	37	CNA*	57.0	62.9	74.8	75.3	57.0	62.9	74.8	75.3				

Page 127 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

			Pr	oduct can	acities - T	imber to	Timber - L	arge conn	ector scr	ew		
		Fastene							cities - Ti		R4.k 4.0x50 7 20.8 7 20.8 7 20.8 7 20.8 8 20.8 8 31.2 9 31.2 9 31.2 2 31.2 2 31.2 2 31.2 2 31.2 2 31.2 2 31.2 4 31.2 4 41.6	
Blank		Header	J	loist		R	3.k	<u> </u>		R	4.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
CLEEOD AL /AV	4	SSH12.0x60	13	CNA*	7.3	8.8	10.6	10.6	16.0	17.7	20.8	20.8
GLE500-AL/4X	4	SSH12.0x120	13	CNA*	7.3	8.8	11.5	13.9	16.0	17.7	20.8	20.8
GLE540-AL/4X	4	SSH12.0x60	13	CNA*	7.3	8.8	9.8	9.8	16.0	17.7	20.8	20.8
GLES40-AL/4A	4	SSH12.0x120	13	CNA*	7.3	8.8	11.5	13.9	16.0	17.7	20.8	20.8
GLE600-AL/4X	4	SSH12.0x60	16	CNA*	8.3	8.3	8.3	8.3	19.7	20.8	20.8	20.8
GLE000-AL/4A	4	SSH12.0x120	16	CNA*	8.8	10.5	12.1	12.1	19.7	20.8	20.8	20.8
GLE660-AL/4X	6	SSH12.0x60	19	CNA*	10.2	10.9	10.9	10.9	23.4	25.8	31.2	31.2
GLE000-AL/4A	6	SSH12.0x120	19	CNA*	10.2	12.1	15.7	16.0	23.4	25.8	31.2	31.2
CL E720 AL /4V	6	SSH12.0x60	22	CNA*	9.7	9.7	9.7	9.7	27.1	29.9	31.2	31.2
GLE720-AL/4X	6	SSH12.0x120	22	CNA*	11.5	13.6	14.2	14.2	27.1	29.9	31.2	31.2
GLE780-AL/4X	6	SSH12.0x60	25	CNA*	9.5	9.5	9.5	9.5	30.8	31.2	31.2	31.2
GLE/60-AL/4A	6	SSH12.0x120	25	CNA*	12.7	14.0	14.0	14.0	30.8	31.2	31.2	31.2
GLE840-AL/4X	6	SSH12.0x60	28	CNA*	8.6	8.6	8.6	8.6	31.2	31.2	31.2	31.2
GLE040-AL/4A	6	SSH12.0x120	28	CNA*	12.6	12.6	12.6	12.6	31.2	31.2	31.2	31.2
CL F000 AL /4V	6	SSH12.0x60	31	CNA*	8.7	8.7	8.7	8.7	31.2	31.2	31.2	31.2
GLE900-AL/4X	6	SSH12.0x120	31	CNA*	12.8	12.8	12.8	12.8	31.2	31.2	31.2	31.2
CL E060, AL /4V	6	SSH12.0x60	34	CNA*	8.2	8.2	8.2	8.2	31.2	31.2	31.2	31.2
GLE960-AL/4X	6	SSH12.0x120	34	CNA*	12.0	12.0	12.0	12.0	31.2	31.2	31.2	31.2
GLE1020-AL/4X	8	SSH12.0x60	37	CNA*	10.1	10.1	10.1	10.1	41.6	41.6	41.6	41.6
GLE 1020-AL/4X	8	SSH12.0x120	37	CNA*	14.8	14.8	14.8	14.8	41.6	41.6	41.6	41.6

The user shall verify the transversal tension in timber which is not included in these capacities.


GLE-AL fire resistance R30 to EN 13501-2

See GLE Joist hanger

^{*}Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

D16 GLI Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GLI	Steel ref 1 - Steel ref 2	-

Dimensions

											, <	/
		Dime	nsions	[mm]					Н	loles		
Blank		Dillic	11310113	[Hea	der		Jo	ist
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
300/2.5X	76-110	(300-A)/2	90	38.5	95	2.5	12	Ø5	2	Ø14	7	Ø5
340/2.5X	76-110	(340-A)/2	90	38.5	95	2.5	16	Ø5	2	Ø14	9	Ø5
380/2.5X	76-110	(380-A)/2	90	38.5	95	2.5	20	Ø5	2	Ø14	11	Ø5
440/2.5X	76-160	(440-A)/2	90	38.5	95	2.5	20	Ø5	4	Ø14	12	Ø5
500/2.5X	76-160	(500-A)/2	90	38.5	95	2.5	26	Ø5	4	Ø14	15	Ø5
540/2.5X	76-160	(540-A)/2	90	38.5	95	2.5	30	Ø5	4	Ø14	17	Ø5
600/2.5X	76-160	(600-A)/2	90	38.5	95	2.5	36	Ø5	4	Ø14	20	Ø5
660/2.5X	76-160	(660-A)/2	90	38.5	95	2.5	40	Ø5	6	Ø14	23	Ø5
720/2.5X	76-160	(720-A)/2	90	38.5	95	2.5	46	Ø5	6	Ø14	26	Ø5
780/2.5X	76-160	(780-A)/2	90	38.5	95	2.5	48	Ø5	6	Ø14	29	Ø5
840/2.5X	76-160	(840-A)/2	90	38.5	95	2.5	54	Ø5	6	Ø14	32	Ø5
900/2.5X	76-160	(900-A)/2	90	38.5	95	2.5	60	Ø5	6	Ø14	35	Ø5
960/2.5X	76-160	(960-A)/2	90	38.5	95	2.5	64	Ø5	8	Ø14	38	Ø5
1020/2.5X	76-160	(1020-A)/2	90	38.5	95	2.5	70	Ø5	8	Ø14	41	Ø5
300/4X	76-110	(300-A)/2	90	40	98	4	12	Ø5	2	Ø14	7	Ø5
340/4X	76-110	(340-A)/2	90	40	98	4	16	Ø5	2	Ø14	9	Ø5
380/4X	76-110	(380-A)/2	90	40	98	4	20	Ø5	2	Ø14	11	Ø5
440/4X	76-160	(440-A)/2	90	40	98	4	20	Ø5	4	Ø14	12	Ø5
500/4X	76-160	(500-A)/2	90	40	98	4	26	Ø5	4	Ø14	15	Ø5
540/4X	76-160	(540-A)/2	90	40	98	4	30	Ø5	4	Ø14	17	Ø5
600/4X	76-160	(600-A)/2	90	40	98	4	36	Ø5	4	Ø14	20	Ø5
660/4X	76-160	(660-A)/2	90	40	98	4	40	Ø5	6	Ø14	23	Ø5
720/4X	76-160	(720-A)/2	90	40	98	4	46	Ø5	6	Ø14	26	Ø5
780/4X	76-160	(780-A)/2	90	40	98	4	48	Ø5	6	Ø14	29	Ø5
840/4X	76-160	(840-A)/2	90	40	98	4	54	Ø5	6	Ø14	32	Ø5
900/4X	76-160	(900-A)/2	90	40	98	4	60	Ø5	6	Ø14	35	Ø5
960/4X	76-160	(960-A)/2	90	40	98	4	64	Ø5	8	Ø14	38	Ø5
1020/4X	76-160	(1020-A)/2	90	40	98	4	70	Ø5	8	Ø14	41	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Page 129 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07 Parameters have to be used with equation in $\underline{\mathsf{Annex}\ \mathsf{C}}$.

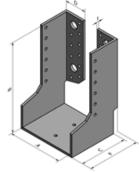
 $k_{\text{H},1}$ for Joist Hanger GLI - Full nailing - F1

See GLE Joist hanger

 $k_{\text{H,1}}$ for Joist Hanger GLI - Partial nailing - F1

See GLE Joist hanger

 $k_{\text{H},2}$ for GLI - Full or partial nailing - F2


See GLE Joist hanger

GLI fire resistance R30 to EN 13501-2

See GLE Joist hanger

D17 GLI-AL Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GLI-AL	Steel ref 1 - Steel ref 2	-

Dimensions

												~
	Dimensio	ne [mm]					Holes					
Blank	Dillielisio	iis [iiiii]					Heade	r			Joist	
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
500/2.5X-AL	161-200	(500-A)/2	90	38.5	95	2.5	18	Ø5	4	Ø14	13	Ø5
540/2.5X-AL	161-240	(540-A)/2	90	38.5	95	2.5	18	Ø5	4	Ø14	13	Ø5
600/2.5X-AL	161-240	(600-A)/2	90	38.5	95	2.5	24	Ø5	4	Ø14	16	Ø5
660/2.5X-AL	161-240	(660-A)/2	90	38.5	95	2.5	28	Ø5	6	Ø14	19	Ø5
720/2.5X-AL	161-240	(720-A)/2	90	38.5	95	2.5	34	Ø5	6	Ø14	22	Ø5
780/2.5X-AL	161-240	(780-A)/2	90	38.5	95	2.5	40	Ø5	6	Ø14	25	Ø5
840/2.5X-AL	161-240	(840-A)/2	90	38.5	95	2.5	46	Ø5	6	Ø14	28	Ø5
900/2.5X-AL	161-240	(900-A)/2	90	38.5	95	2.5	52	Ø5	6	Ø14	31	Ø5
960/2.5X-AL	161-240	(960-A)/2	90	38.5	95	2.5	58	Ø5	8	Ø14	34	Ø5
1020/2.5X-AL	161-240	(1020-A)/2	90	38.5	95	2.5	62	Ø5	8	Ø14	37	Ø5
500/4X-AL	161-200	(500-A)/2	90	40	98	4	18	Ø5	4	Ø14	13	Ø5
540/4X-AL	161-240	(540-A)/2	90	40	98	4	18	Ø5	4	Ø14	13	Ø5
600/4X-AL	161-240	(600-A)/2	90	40	98	4	24	Ø5	4	Ø14	16	Ø5
660/4X-AL	161-240	(660-A)/2	90	40	98	4	28	Ø5	6	Ø14	19	Ø5
720/4X-AL	161-240	(720-A)/2	90	40	98	4	34	Ø5	6	Ø14	22	Ø5
780/4X-AL	161-240	(780-A)/2	90	40	98	4	40	Ø5	6	Ø14	25	Ø5
840/4X-AL	161-240	(840-A)/2	90	40	98	4	46	Ø5	6	Ø14	28	Ø5
900/4X-AL	161-240	(900-A)/2	90	40	98	4	52	Ø5	6	Ø14	31	Ø5
960/4X-AL	161-240	(960-A)/2	90	40	98	4	58	Ø5	8	Ø14	34	Ø5
1020/4X-AL	161-240	(1020-A)/2	90	40	98	4	62	Ø5	8	Ø14	37	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Page 131 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07 Parameters have to be used with equation in $\underline{\mathsf{Annex}\ \mathsf{C}}$.

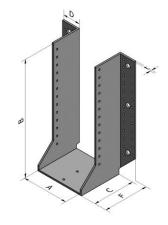
k_{H,1} for Joist Hanger GLI-AL - Full nailing - F1

See GLE Joist hanger

 $k_{\text{H},1}$ for Joist Hanger GLI-AL - Partial nailing - F1

See GLE Joist hanger

 $k_{\text{H},2}$ for GLI-AL - Full or partial nailing - F2


See GLE Joist hanger

GLI-AL fire resistance R30 to EN 13501-2

See GLE Joist hanger

D18 GSE Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GSE	Steel ref 1 - Steel ref 2	-

Dimensions

		Dimor	nsions [mm1					Нс	oles		
Blank		Dilliei	ן פווטופן					Heade	r		Jo	oist
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
300/4X	32-110	(300-A)/2	110	45.5	118	4	12	Ø5	2	Ø13	6	Ø5
340/4X	32-110	(340-A)/2	110	45.5	118	4	16	Ø5	2	Ø13	8	Ø5
380/4X	32-140	(380-A)/2	110	45.5	118	4	16	Ø5	4	Ø13	8	Ø5
440/4X	32-140	(440-A)/2	110	45.5	118	4	22	Ø5	4	Ø13	12	Ø5
500/4X	32-140	(500-A)/2	110	45.5	118	4	28	Ø5	4	Ø13	14	Ø5
540/4X	32-140	(540-A)/2	110	45.5	118	4	32	Ø5	4	Ø13	16	Ø5
600/4X	32-140	(600-A)/2	110	45.5	118	4	38	Ø5	4	Ø13	20	Ø5
660/4X	32-140	(660-A)/2	110	45.5	118	4	44	Ø5	6	Ø13	22	Ø5
720/4X	32-140	(720-A)/2	110	45.5	118	4	50	Ø5	6	Ø13	26	Ø5
780/4X	32-140	(780-A)/2	110	45.5	118	4	56	Ø5	6	Ø13	28	Ø5
840/4X	32-140	(840-A)/2	110	45.5	118	4	62	Ø5	6	Ø13	32	Ø5
900/4X	32-140	(900-A)/2	110	45.5	118	4	68	Ø5	6	Ø13	36	Ø5
960/4X	32-140	(960-A)/2	110	45.5	118	4	74	Ø5	6	Ø13	38	Ø5
1020/4X	32-140	(1020-A)/2	110	45.5	118	4	80	Ø5	6	Ø13	40	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Parameters have to be used with equation in Annex C

 $k_{\text{H,1}}$ for Joist Hanger GSE and GSI - Full nailing - F1

NH,1 I			ange	GSL			- i ui	ruii nailing - F1																				
	30	00	34	10	3	80	4	40	5	00	5	40	6	00	6	60	7	720	7	780	8	40	9	00	9	60	10	020
	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	пн	Ŋ	пн	nJ	nн	nJ	пн	nJ	пн	nJ	nн	nJ	nн	nJ
	12	6	16	8	16	8	22	12	28	14	32	16	38	20	44	22	50	26	56	28	62	32	68	38	74	38	80	40
Α	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1
32	134	17.5	154	21.0	174	25.4	204	41.2	234	55.7	254	66.1	284	82.9	314	102.2	344	122.8	374	145.9	404	170.3	434	196.1	464	225.3	494	255.9
34	133	17.3	153	20.8	173	25.2	203	40.8	233	55.3	253	65.6	283	82.3	313	101.6	343	122.1	373	145.1	403	169.4	433	195.2	463	224.4	493	254.9
36	132	17.1	152	20.5	172	24.9	202	40.5	232	54.8	252	65.1	282	81.8	312	101	342	121.4	372	144.3	402	168.6	432	194.4	462	223.4	492	253.9
38	131	16.8	151	20.3	171	24.7	201	40.1	231	54.4	251	64.6	281	81.2	311	100.3	341	120.7	371	143.6	401	167.8	431	193.5	461	222.4	491	252.9
40	130	16.6	150	20.1	170	24.5	200	39.8	230	54.0	250	64.2	280	80.7	310	99.7	340	120	370	142.8	400	167	430	192.6	460	221.5	490	251.8
42	129	16.4	149	19.9	169	24.3	199	39.4	229	53.5	249	63.7	279	80.1	309	99.1	339	119.4	369	142.1	399	166.1	429	191.7	459	220.5	489	250.8
44	128	16.2	148	19.7	168	24.1	198	39.1	228	53.1	248	63.2	278	79.6	308	98.5	338	118.7	368	141.3	398	165.3	428	190.8	458	219.6	488	249.8
46	127	15.9	147	19.4	167	23.8	197	38.7	227	52.7	247	62.7	277	79.0	307	97.9	337	118	367	140.6	397	164.5	427	189.9	457	218.6	487	248.8
48	126	15.7	146	19.2	166	23.6	196	38.3	226	52.2	246	62.2	276	78.5	306	97.2	336	117.3	366	139.8	396	163.7	426	189	456	217.7	486	247.7
50	125	15.5	145	19.0	165	23.4	195	38.0	225	51.8	245	61.7	275	77.9	305	96.6	335	116.6	365	139	395	162.9	425	188.2	455	216.7	485	246.7
52	124	15.3	144	18.8	164	23.2	194	37.6	224	51.4	244	61.3	274	77.4	304	96	334	115.9	364	138.3	394	162	424	187.3	454	215.8	484	245.7
54	123	15.1	143	18.6	163	22.9	193	37.3	223	50.9	243	60.8	273	76.8	303	95.4	333	115.2	363	137.5	393	161.2	423	186.4	453	214.8	483	244.7
56	122	14.8	142	18.4	162	22.7	192	36.9	222	50.5	242	60.3	272	76.3	302	94.8	332	114.6	362	136.8	392	160.4	422	185.5	452	213.9	482	243.7
58	121	14.6	141	18.1	161	22.5	191	36.6	221	50.1	241	59.8	271	75.8	301	94.2	331	113.9	361	136	391	159.6	421	184.6	451	212.9	481	242.7
60	120	14.4	140	17.9	160	22.3	190	36.2	220	49.6	240	59.4	270	75.2	300	93.5	330	113.2	360	135.3	390	158.8	420	183.8	450	212	480	241.7
62	119	14.2	139	17.7	159	22.1	189	35.9	219	49.2	239	58.9	269	74.7	299	92.9	329	112.5	359	134.6	389	158	419	182.9	449	211	479	240.6
64	118	13.9	138	17.5	158	21.8	188	35.5	218	48.8	238	58.4	268	74.1	298	92.3	328	111.9	358	133.8	388	157.2	418	182	448	210.1	478	239.6
66	117	13.7	137	17.3		21.6	187	35.2	217	48.4	237	57.9	267	73.6	297	91.7	327	111.2	357	133.1	387	156.4	417	181.1	447	209.1	477	238.6
68	116	13.5	136	17.1	156	21.4	186	34.8	216	47.9	236	57.5	266	73.1	296	91.1	326	110.5	356	132.3	386	155.5	416	180.3	446	208.2	476	237.6
70	115	13.3	135	16.8	155	21.2	185	34.5	215	47.5	235	57.0	265	72.5	295	90.5	325	109.8	355	131.6	385	154.7	415	179.4	445	207.3	475	236.6
72	114	13.1	134	16.6	154	21.0	184	34.1	214	47.1	234	56.5	264	72.0	294	89.9	324	109.2	354	130.8	384	153.9	414	178.5	444	206.3	474	235.6
74	113	12.9	133	16.4		20.8	183	33.8	213	46.7	233	56.1	263	71.4	293	89.3	323	108.5	353	130.1	383	153.1	413	177.7	443	205.4	473	234.6
76	112	12.6	132	16.2	152	20.5	182	33.4	212	46.2	232	55.6	262	70.9	292	88.7	322	107.8	352	129.4	382	152.3	412	176.8	442	204.5	472	233.6
78	111	12.4	131	16.0	151	20.3	181	33.1	211	45.8	231	55.1	261	70.4	291	88.1	321	107.2	351	128.6	381	151.5	411	175.9	441	203.5	471	232.6
80	110	12.2	130	15.8	150	20.1	180	32.7	210	45.4	230	54.7	260	69.8	290	87.5	320	106.5	350	127.9	380	150.7	410	175.1	440	202.6	470	231.6

Page 134 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

					_								-														_	
82	109	12.0	129	15.6	149	19.9	179	32.4	209	45.0	229	54.2	259	69.3	289	86.9	319	105.8	349	127.2	379	149.9	409	174.2	439	201.7	469	230.6
84	108	11.8	128	15.4	148	19.7	178	32.0	208	44.6	228	53.7	258	68.8	288	86.3	318	105.2	348	126.4	378	149.1	408	173.4	438	200.7	468	229.6
86	107	11.6	127	15.1	147	19.4	177	31.7	207	44.2	227	53.3	257	68.3	287	85.7	317	104.5	347	125.7	377	148.3	407	172.5	437	199.8	467	228.6
88	106	11.4	126	14.9	146	19.2	176	31.4	206	43.7	226	52.8	256	67.7	286	85.1	316	103.8	346	125	376	147.5	406	171.6	436	198.9	466	227.6
90	105	11.1	125	14.7	145	19.0	175	31.0	205	43.3	225	52.3	255	67.2	285	84.5	315	103.2	345	124.2	375	146.7	405	170.8	435	198	465	226.7
92	104	10.9	124	14.5	144	18.8	174	30.7	204	42.9	224	51.9	254	66.7	284	83.9	314	102.5	344	123.5	374	146	404	169.9	434	197	464	225.7
94	103	10.7	123	14.3	143	18.6	173	30.3	203	42.5	223	51.4	253	66.2	283	83.3	313	101.9	343	122.8	373	145.2	403	169.1	433	196.1	463	224.7
96	102	10.5	122	14.1	142	18.4	172	30.0	202	42.1	222	51.0	252	65.6	282	82.7	312	101.2	342	122.1	372	144.4	402	168.2	432	195.2	462	223.7
98	101	10.3	121	13.9	141	18.1	171	29.7	201	41.7	221	50.5	251	65.1	281	82.1	311	100.5	341	121.3	371	143.6	401	167.4	431	194.3	461	222.7
100	100	10.1	120	13.7	140	17.9	170	29.3	200	41.3	220	50.1	250	64.6	280	81.5	310	99.9	340	120.6	370	142.8	400	166.5	430	193.4	460	221.7
102	99	9.9	119	13.5	139	17.7	169	29.0	199	40.8	219	49.6	249	64.1	279	80.9	309	99.2	339	119.9	369	142	399	165.7	429	192.5	459	220.8
104	98	9.7	118	13.2	138	17.5	168	28.6	198	40.4	218	49.1	248	63.5	278	80.4	308	98.6	338	119.2	368	141.2	398	164.8	428	191.5	458	219.8
106	97	9.5	117	13.0	137	17.3	167	28.3	197	40.0	217	48.7	247	63.0	277	79.8	307	97.9	337	118.5	367	140.5	397	164	427	190.6	457	218.8
108	96	9.3	116	12.8	136	17.1	166	28.0	196	39.6	216	48.2	246	62.5	276	79.2	306	97.3	336	117.8	366	139.7	396	163.2	426	189.7	456	217.8
110	95	9.1	115	12.6	135	16.8	165	27.6	195	39.2	215	47.8	245	62.0	275	78.6	305	96.6	335	117	365	138.9	395	162.3	425	188.8	455	216.8
112	-	-	ı	1	134	16.6	164	27.3	194	38.8	214	47.3	244	61.5	274	78	304	96	334	116.3	364	138.1	394	161.5	424	187.9	454	215.9
114	-	-	ı	ı	133	16.4	163	27	193	38.4	213	46.9	243	61	273	77.4	303	95.3	333	115.6	363	137.4	393	160.6	423	187	453	214.9
116	-	-	-	-	132	16.2	162	26.6	192	38	212	46.4	242	60.5	272	76.9	302	94.7	332	114.9	362	136.6	392	159.8	422	186.1	452	213.9
118	-	-	ı	1	131	16	161	26.3	191	37.6	211	46	241	60	271	76.3	301	94.1	331	114.2	361	135.8	391	159	421	185.2	451	213
120	-	-	1	ı	130	15.8	160	26	190	37.2	210	45.6	240	59.4	270	75.7	300	93.4	330	113.5	360	135	390	158.1	420	184.3	450	212
122	-	-	ı	1	129	15.6	159	25.7	189	36.8	209	45.1	239	58.9	269	75.1	299	92.8	329	112.8	359	134.3	389	157.3	419	183.4	449	211
124	-	-	-	-	128	15.4	158	25.3	188	36.4	208	44.7	238	58.4	268	74.6	298	92.1	328	112.1	358	133.5	388	156.5	418	182.5	448	210.1
126	-	-	-		127	15.1	157	25	187	36	207	44.2	237	57.9	267	74	297	91.5	327	111.4	357	132.7	387	155.7	417	181.6	447	209.1
128	-	-	-	-	126	14.9	156	24.7	186	35.6	206	43.8	236	57.4	266	73.4	296	90.9	326	110.7	356	132	386	154.8	416	180.7	446	208.2
130	-	-	-	•	125	14.7	155	24.4	185	35.2	205	43.4	235	56.9	265	72.8	295	90.2	325	110	355	131.2	385	154	415	179.8	445	207.2
132	-	-	-	-	124	14.5	154	24	184	34.8	204	42.9	234	56.4	264	72.3	294	89.6	324	109.3	354	130.5	384	153.2	414	178.9	444	206.3
134	-	-	-	-	123	14.3	153	23.7	183	34.4	203	42.5	233	55.9	263	71.7	293	89	323	108.6	353	129.7	383	152.4	413	178.1	443	205.3
136	_	-	-	-	122	14.1	152	23.4	182	34	202	42.1	232	55.4	262	71.2	292	88.4	322	107.9	352	128.9	382	151.6	412	177.2	442	204.3
138	-	-	-	-	121	13.9	151	23.1	181	33.7	201	41.6	231	54.9	261	70.6	291	87.7	321	107.2	351	128.2	381	150.7	411	176.3	441	203.4
140	-	-	-	-	120	13.7	150	22.8	180	33.3	200	41.2	230	54.4	260	70	290	87.1	320	106.5	350	127.4	380	149.9	410	175.4	440	202.4
La Class		o of ir	_	11 - 1 -																								

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

Page 135 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

k_{H,1} for Joist Hanger GSE and GSI - Partial nailing - F1

K _{H,1} tor	JOISI	пап	ger G	SE a	ia G	<u> </u>	artia	ı naııı	ng -	ГІ					ı				·						·			
	3	00	3	40	3	80	4	40	5	00	5	40	6	00	6	60	7	20	7	80	8	40	9	00	9	60	10	020
	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ
	6	4	8	4	8	4	12	6	14	8	16	8	20	10	22	12	26	14	28	14	32	16	34	18	38	20	40	20
Α	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1
32	134	10.7	154	15.0	174	18.4	204	25.3	234	31.9	254	38.2	284	47.3	314	56.6	344	67.7	374	80.1	404	92.9	434	106.2	464	120.9	494	137.1
34	133	10.6	153	14.9	173	18.2	203	25.1	233	31.6	253	37.9	283	47.0	313	56.3	343	67.3	373	79.7	403	92.5	433	105.7	463	120.4	493	136.6
36	132	10.4	152	14.7	172	18.0	202	24.8	232	31.4	252	37.6	282	46.7	312	55.9	342	66.9	372	79.2	402	92	432	105.2	462	119.9	492	136
38	131	10.3	151	14.6	171	17.9	201	24.6	231	31.1	251	37.3	281	46.4	311	55.6	341	66.5	371	78.8	401	91.6	431	104.8	461	119.4	491	135.5
40	130	10.2	150	14.4	170	17.7	200	24.4	230	30.9	250	37.0	280	46.1	310	55.3	340	66.2	370	78.4	400	91.1	430	104.3	460	118.9	490	135
42	129	10.1	149	14.2	169	17.5	199	24.2	229	30.7	249	36.7	279	45.8	309	54.9	339	65.8	369	78	399	90.7	429	103.8	459	118.4	489	134.4
44	128	9.9	148	14.1	168	17.4	198	24.0	228	30.4	248	36.4	278	45.4	308	54.6	338	65.4	368	77.6	398	90.2	428	103.4	458	117.9	488	133.9
46	127	9.8	147	13.9	167	17.2	197	23.8	227	30.2	247	36.2	277	45.1	307	54.3	337	65	367	77.2	397	89.8	427	102.9	457	117.4	487	133.4
48	126	9.7	146	13.7	166	17.0	196	23.6	226	30.0	246	35.9	276	44.8	306	53.9	336	64.7	366	76.8	396	89.3	426	102.4	456	116.9	486	132.8
50	125	9.6	145	13.6	165	16.9	195	23.3	225	29.7	245	35.6	275	44.5	305	53.6	335	64.3	365	76.4	395	88.9	425	101.9	455	116.4	485	132.3
52	124	9.4	144	13.4	164	16.7	194	23.1	224	29.5	244	35.3	274	44.2	304	53.3	334	63.9	364	76	394	88.5	424	101.5	454	115.9	484	131.7
54	123	9.3	143	13.3	163	16.5	193	22.9	223	29.3	243	35.0	273	43.9	303	53	333	63.6	363	75.6	393	88	423	101	453	115.3	483	131.2
56	122	9.2	142	13.1	162	16.4	192	22.7	222	29.0	242	34.7	272	43.6	302	52.6	332	63.2	362	75.2	392	87.6	422	100.6	452	114.8	482	130.7
58	121	9.1	141	12.9	161	16.2	191	22.5	221	28.8	241	34.4	271	43.3	301	52.3	331	62.8	361	74.8	391	87.1	421	100.1	451	114.3	481	130.1
60	120	8.9	140	12.8	160	16.0	190	22.3	220	28.6	240	34.1	270	43.0	300	52	330	62.5	360	74.4	390	86.7	420	99.6	450	113.8	480	129.6
62	119	8.8	139	12.6	159	15.9	189	22.1	219	28.3	239	33.9	269	42.7	299	51.6	329	62.1	359	74	389	86.3	419	99.2	449	113.3	479	129.1
64	118	8.7	138	12.5	158	15.7	188	21.9	218	28.1	238	33.6	268	42.4	298	51.3	328	61.7	358	73.6	388	85.8	418	98.7	448	112.8	478	128.6
66	117	8.6	137	12.3	157	15.5	187	21.6	217	27.9	237	33.3	267	42.1	297	51	327	61.4	357	73.2	387	85.4	417	98.2	447	112.3	477	128
68	116	8.4	136	12.1	156	15.4	186	21.4	216	27.6	236	33.0	266	41.8	296	50.7	326	61	356	72.8	386	85	416	97.8	446	111.8	476	127.5
70	115	8.3	135	12.0	155	15.2	185	21.2	215	27.4	235	32.7	265	41.5	295	50.3	325	60.6	355	72.4	385	84.5	415	97.3	445	111.3	475	127
72	114	8.2	134	11.8	154	15.0	184	21.0	214	27.2	234	32.4	264	41.2	294	50	324	60.3	354	72	384	84.1	414	96.9	444	110.9	474	126.4
74	113	8.1	133	11.7	153	14.9	183	20.8	213	26.9	233	32.2	263	40.9	293	49.7	323	59.9	353	71.6	383	83.7	413	96.4	443	110.4	473	125.9
76	112	7.9	132	11.5	152	14.7	182	20.6	212	26.7	232	31.9	262	40.6	292	49.4	322	59.5	352	71.2	382	83.2	412	95.9	442	109.9	472	125.4
78	111	7.8	131	11.4	151	14.6	181	20.4	211	26.5	231	31.6	261	40.3	291	49	321	59.2	351	70.8	381	82.8	411	95.5	441	109.4	471	124.9
80	110	7.7	130	11.2	150	14.4	180	20.2	210	26.2	230	31.3	260	40.0	290	48.7	320	58.8	350	70.4	380	82.4	410	95	440	108.9	470	124.3
82	109	7.6	129	11.0	149	14.2	179	20.0	209	26.0	229	31.1	259	39.7	289	48.4	319	58.4	349	70.1	379	81.9	409	94.6	439	108.4	469	123.8
84	108	7.5	128	10.9	148	14.1	178	19.8	208	25.8	228	30.8	258	39.4	288	48.1	318	58.1	348	69.7	378	81.5	408	94.1	438	107.9	468	123.3
86	107	7.3	127	10.7	147	13.9	177	19.6	207	25.5	227	30.5	257	39.1	287	47.7	317	57.7	347	69.3	377	81.1	407	93.7	437	107.4	467	122.8

Page 136 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

88	106	7.2	126	10.6	146	13.7	176	19.3	206	25.3	226	30.2	256	38.8	286	47.4	316	57.4	346	68.9	376	80.7	406	93.2	436	106.9	466	122.2
90	105	7.1	125	10.4	145	13.6	175	19.1	205	25.1	225	30.0	255	38.5	285	47.1	315	57	345	68.5	375	80.2	405	92.7	435	106.4	465	121.7
92	104	7.0	124	10.3	144	13.4	174	18.9	204	24.9	224	29.7	254	38.2	284	46.8	314	56.6	344	68.1	374	79.8	404	92.3	434	105.9	464	121.2
94	103	6.9	123	10.1	143	13.3	173	18.7	203	24.6	223	29.4	253	37.9	283	46.5	313	56.3	343	67.7	373	79.4	403	91.8	433	105.4	463	120.7
96	102	6.7	122	10.0	142	13.1	172	18.5	202	24.4	222	29.2	252	37.6	282	46.1	312	55.9	342	67.3	372	79	402	91.4	432	105	462	120.2
98	101	6.6	121	9.8	141	12.9	171	18.3	201	24.2	221	28.9	251	37.3	281	45.8	311	55.6	341	66.9	371	78.5	401	90.9	431	104.5	461	119.6
100	100	6.5	120	9.6	140	12.8	170	18.1	200	23.9	220	28.6	250	37.0	280	45.5	310	55.2	340	66.5	370	78.1	400	90.5	430	104	460	119.1
102	99	6.4	119	9.5	139	12.6	169	17.9	199	23.7	219	28.4	249	36.7	279	45.2	309	54.9	339	66.2	369	77.7	399	90	429	103.5	459	118.6
104	98	6.3	118	9.3	138	12.5	168	17.7	198	23.5	218	28.1	248	36.4	278	44.9	308	54.5	338	65.8	368	77.3	398	89.6	428	103	458	118.1
106	97	6.1	117	9.2	137	12.3	167	17.5	197	23.3	217	27.8	247	36.2	277	44.6	307	54.2	337	65.4	367	76.9	397	89.1	427	102.5	457	117.6
108	96	6.0	116	9.0	136	12.1	166	17.3	196	23.0	216	27.6	246	35.9	276	44.2	306	53.8	336	65	366	76.4	396	88.7	426	102	456	117.1
110	95	5.9	115	8.9	135	12.0	165	17.1	195	22.8	215	27.3	245	35.6	275	43.9	305	53.5	335	64.6	365	76	395	88.2	425	101.6	455	116.6
112					134	11.8	164	16.9	194	22.6	214	27	244	35.3	274	43.6	304	53.1	334	64.2	364	75.6	394	87.8	424	101.1	454	116
114					133	11.7	163	16.7	193	22.4	213	26.8	243	35	273	43.3	303	52.8	333	63.9	363	75.2	393	87.4	423	100.6	453	115.5
116					132	11.5	162	16.5	192	22.2	212	26.5	242	34.7	272	43	302	52.4	332	63.5	362	74.8	392	86.9	422	100.1	452	115
118					131	11.4	161	16.3	191	21.9	211	26.3	241	34.4	271	42.7	301	52.1	331	63.1	361	74.3	391	86.5	421	99.7	451	114.5
120					130	11.2	160	16.1	190	21.7	210	26	240	34.1	270	42.4	300	51.7	330	62.7	360	73.9	390	86	420	99.2	450	114
122					129	11	159	15.9	189	21.5	209	25.8	239	33.9	269	42.1	299	51.4	329	62.3	359	73.5	389	85.6	419	98.7	449	113.5
124					128	10.9	158	15.7	188	21.3	208	25.5	238	33.6	268	41.7	298	51	328	62	358	73.1	388	85.1	418	98.2	448	113
126					127	10.7	157	15.5	187	21.1	207	25.3	237	33.3	267	41.4	297	50.7	327	61.6	357	72.7	387	84.7	417	97.8	447	112.5
128					126	10.6	156	15.3	186	20.8	206	25	236	33	266	41.1	296	50.3	326	61.2	356	72.3	386	84.3	416	97.3	446	112
130					125	10.4	155	15.1	185	20.6	205	24.8	235	32.7	265	40.8	295	50	325	60.8	355	71.9	385	83.8	415	96.8	445	111.5
132					124	10.3	154	14.9	184	20.4	204	24.5	234	32.4	264	40.5	294	49.7	324	60.5	354	71.5	384	83.4	414	96.3	444	111
134					123	10.1	153	14.8	183	20.2	203	24.3	233	32.2	263	40.2	293	49.3	323	60.1	353	71.1	383	83	413	95.9	443	110.5
136					122	10	152	14.6	182	20	202	24	232	31.9	262	39.9	292	49	322	59.7	352	70.7	382	82.5	412	95.4	442	110
138					121	9.8	151	14.4	181	19.8	201	23.8	231	31.6	261	39.6	291	48.6	321	59.3	351	70.2	381	82.1	411	94.9	441	109.5
140			i		120	9.6	150	14.2	180	19.5	200	23.5	230	31.3	260	39.3	290	48.3	320	59	350	69.8	380	81.7	410	94.5	440	109

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation.

$k_{\text{H,2}}$ for GSE and GSI - Full or partial nailing - F2

Blank		nber of nails header		k _{H2}
	Full nailing	Partial nailing	Full nailing	Partial nailing
300	12	6	5,6	2.6
340	12	8	5,6	4.3
380	12	8	5,6	4.3
440	22	12	16,0	9
500	28	14	24,7	12
540	32	16	31,7	15.4
600	38	20	43,6	23.4
660	44	22	57,5	28.1
720	50	26	73,3	38.8
780	56	28	91,0	44.7
840	62	32	110,6	57.9
900	68	38	132,1	65.1
960	74	38	155,6	80.9
1020	80	40	180,9	89.4

Characteristic capacities for GSE/4 - with connector screw SSH/SSF without pre drilling

			Produ	ct capac	ities - Ti	mber to 1						
		Fastener	's			С	haracteri	stic capa	cities - T	imber C2	24	
References		Header	Jo	pist		R	1.k			R	2.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
GSE300	2	SSH12.0x60	6	CNA*	8,1	8,3	8,7	8,9	7,4	7,7	8,2	8,4
GSE300	2	SSH12.0x120	6	CNA*	9.2	10.2	12.4	12.8	9.2	10.2	11.6	11.9
CSE240	2	SSH12.0x60	8	CNA*	9,4	9,5	9,8	9,9	8,5	8,8	9,4	9,6
GSE340	2	SSH12.0x120	8	CNA*	12.3	13.5	14.1	14.2	11.7	12.2	13	13.2
CCE200	4	SSH12.0x60	8	CNA*	12.2	12.6	13.2	13.3	11.8	12.2	12.8	13.1
GSE380	4	SSH12.0x120	8	CNA*	12.3	13.6	16.5	17.8	12.3	13.6	16.5	17.8
005440	4	SSH12.0x60	12	CNA*	16,0	16,3	16,9	17,0	15,8	16,2	16,8	17,0
GSE440	4	SSH12.0x120	12	CNA*	18.4	20.4	23.8	24.2	18.5	20.4	23.4	23.9
005500	4	SSH12.0x60	14	CNA*	17,5	17,8	18,0	18,0	17,5	17,8	18,0	18,0
GSE500	4	SSH12.0x120	14	CNA*	21.5	23.8	25.8	26.1	21.5	23.8	25.8	26.1
005540	4	SSH12.0x60	16	CNA*	18,5	18,6	18,6	18,6	18,5	18,6	18,6	18,6
GSE540	4	SSH12.0x120	16	CNA*	24.6	26.3	27.2	27.4	24.6	26.3	27.2	27.4
005000	4	SSH12.0x60	20	CNA*	19,2	19,2	19,2	19,2	19,2	19,2	19,2	19,2
GSE600	4	SSH12.0x120	20	CNA*	28.1	28.3	28.4	28.4	28.0	28.3	28.4	28.4
005000	6	SSH12.0x60	22	CNA*	27,7	27,8	27,8	27,8	27,7	27,8	27,8	27,8
GSE660	6	SSH12.0x120	22	CNA*	33.9	37.4	40.8	41.0	33.9	37.4	40.8	41.0
005700	6	SSH12.0x60	26	CNA*	28,5	28,5	28,5	28,5	28,5	28,5	28,5	28,5
GSE720	6	SSH12.0x120	26	CNA*	40.0	41.7	42.2	42.2	40.0	41.7	42.2	42.2
005700	6	SSH12.0x60	28	CNA*	28,9	28,9	28,9	28,9	28,9	28,9	28,9	28,9
GSE780	6	SSH12.0x120	28	CNA*	42.1	42.7	42.8	42.8	42.1	42.7	42.8	42.8
005040	6	SSH12.0x60	32	CNA*	29,2	29,2	29,2	29,2	29,2	29,2	29,2	29,2
GSE840	6	SSH12.0x120	32	CNA*	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2
005000	6	SSH12.0x60	34	CNA*	29,2	29,2	29,2	29,2	29,2	29,2	29,2	29,2
GSE900	6	SSH12.0x120	34	CNA*	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.3
005000	6	SSH12.0x60	38	CNA*	29,4	29,4	29,4	29,4	29,4	29,4	29,4	29,4
GSE960	6	SSH12.0x120	38	CNA*	43.6	43.6	43.6	43.6	43.6	43.6	43.6	43.6
0054000	6	SSH12.0x60	40	CNA*	29,5	29,5	29,5	29,5	29,5	29,5	29,5	29,5
GSE1020	6	SSH12.0x120	40	CNA*	43.7	43.7	43.7	43.7	43.7	43.7	43.7	43.7

Page 139 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

		F	Produ	ct capac	cities - Ti	mber to 1	Γimber - I	Large coi	nnector s	screw		
		Fasteners								imber C2	24	
References		Header		oist		R	3.k	·		R	4.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
GSE300	2	SSH12.0x60	6	CNA*	1,9	2,4	3,1	3,7	5,0	5,0	5,0	5,0
GSESUU	2	SSH12.0x120	6	CNA*	1.9	2.4	3.5	4.5	5	5	5	5
GSE340	2	SSH12.0x60	8	CNA*	2,0	2,2	2,7	3,1	5,0	5,0	5,0	5,0
GSE340	2	SSH12.0x120	8	CNA*	2.4	3	3.9	4.6	5	5	5	5
GSE380	4	SSH12.0x60	8	CNA*	2.4	3	4.5	5.4	9.8	10	10	10
GSE300	4	SSH12.0x120	8	CNA*	2.4	3	4.5	5.7	9.8	10	10	10
CSE440	4	SSH12.0x60	12	CNA*	3,2	3,7	4,2	4,7	10,0	10,0	10,0	10,0
GSE440	4	SSH12.0x120	12	CNA*	3.2	4	6	7	10	10	10	10
CCEEOO	4	SSH12.0x60	14	CNA*	3,2	3,3	3,7	4,1	10,0	10,0	10,0	10,0
GSE500	4	SSH12.0x120	14	CNA*	3.5	4.4	5.4	6	10	10	10	10
00000	4	SSH12.0x60	16	CNA*	3,3	3,4	3,7	4,0	10,0	10,0	10,0	10,0
GSE540	4	SSH12.0x120	16	CNA*	3.8	4.7	5.5	6.0	10.0	10.0	10.0	10.0
CSEGOO	4	SSH12.0x60	20	CNA*	3,8	3,9	4,2	4,4	10,0	10,0	10,0	10,0
GSE600	4	SSH12.0x120	20	CNA*	4.2	5.2	6.2	6.6	10.0	10.0	10.0	10.0
GSE660	6	SSH12.0x60	22	CNA*	4,2	4,3	4,6	4,9	15,0	15,0	15,0	15,0
GSE000	6	SSH12.0x120	22	CNA*	4.3	5.4	6.8	7.3	15.0	15.0	15.0	15.0
GSE720	6	SSH12.0x60	26	CNA*	4,5	4,8	5,0	5,3	15,0	15,0	15,0	15,0
GSE/20	6	SSH12.0x120	26	CNA*	4.5	5.7	7.5	7.9	15.0	15.0	15.0	15.0
CCE700	6	SSH12.0x60	28	CNA*	4,6	4,9	5,1	5,3	15,0	15,0	15,0	15,0
GSE780	6	SSH12.0x120	28	CNA*	4.6	5.8	7.6	7.9	15.0	15.0	15.0	15.0
GSE840	6	SSH12.0x60	32	CNA*	4,8	5,0	5,2	5,4	15,0	15,0	15,0	15,0
GSE040	6	SSH12.0x120	32	CNA*	4.8	6.0	7.7	8.0	15.0	15.0	15.0	15.0
GSE900	6	SSH12.0x60	34	CNA*	4,7	4,7	4,9	5,1	15,0	15,0	15,0	15,0
GSE900	6	SSH12.0x120	34	CNA*	4.8	6.0	7.3	7.6	15.0	15.0	15.0	15.0
CSEOSO	6	SSH12.0x60	38	CNA*	4,9	5,1	5,3	5,5	15,0	15,0	15,0	15,0
GSE960	6	SSH12.0x120	38	CNA*	4.9	6.2	7.8	8.1	15.0	15.0	15.0	15.0
CCE4020	6	SSH12.0x60	40	CNA*	4,9	4,9	5,1	5,2	15,0	15,0	15,0	15,0
GSE1020	6	SSH12.0x120	40	CNA*	4.9	6.2	7.5	7.7	15.0	15.0	15.0	15.0

The user shall verify the transversal tension in timber which is not included in these capacities.

There is no improvement of the characteristic values between SSH12.0x60 and SSH12.0x100 without pre drilling.

^{*}Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

Page 140 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

Characteristic capacities for GSE/4 - with connector screw SSH/SSF with pre drilling

				t capac	ities - Tir			arge cor				
		Fasteners		• .				stic capa	cities - T	imber C2		
References		Header	J	oist		R	1.k			R	2.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
	2	SSH12.0x60	6	CNA*	9.2	9.7	10.3	10.5	8.4	8.8	9.4	9.7
GSE300	2	SSH12.0x80	6	CNA*	9.2	10.1	11.2	11.5	8.8	9.2	10	10.3
	2	SSH12.0x120	6	CNA*	9.2	10.2	12.4	13.4	9.2	10.2	12.4	13.0
	2	SSH12.0x60	8	CNA*	11.2	11.5	12.1	12.3	9.7	10.2	11.0	11.3
GSE340	2	SSH12.0x80	8	CNA*	12.2	12.8	13.8	14.1	10.3	10.8	11.9	12.3
	2	SSH12.0x120	8	CNA*	12.3	13.6	16.4	16.9	12.3	13.2	14.5	14.9
	4	SSH12.0x60	8	CNA*	12.3	13.6	15.8	16.1	12.3	13.6	15.2	15.5
GSE380	4	SSH12.0x80	8	CNA*	12.3	13.6	16.5	17.7	12.3	13.6	16.3	16.9
	4	SSH12.0x120	8	CNA*	12.3	13.6	16.5	17.8	12.3	13.6	16.5	17.8
005440	4	SSH12.0x60	12	CNA*	18.4	19.4	20.7	21.1	18.1	19.0	20.4	20.9
GSE440	4	SSH12.0x80	12	CNA*	18.5	20.4	23.3	24	18.5	20.2	22.7	23.5
	4	SSH12.0x120 SSH12.0x60	12 14	CNA*	18.5	20.4	24.8	26.7	18.5	20.4	24.8	26.8
GSE500	4	SSH12.0x80	14	CNA*	20.8 21.5	21.6 23.6	22.8 26.2	23.1 26.9	20.7 21.6	21.6 23.5	22.8 26.1	23.1 26.9
G3E300	4	SSH12.0x120	14	CNA*	21.5	23.8	29.0	30.9	21.6	23.8	29.0	30.8
	4	SSH12.0x60	16	CNA*	22.7	23.3	24.1	24.2	22.6	23.3	24.1	24.2
GSE540	4	SSH12.0x80	16	CNA*	24.6	26.3	28.6	29.3	24.6	26.2	28.6	29.3
002040	4	SSH12.0x120	16	CNA*	24.6	27.2	32.6	33.5	24.6	27.2	32.5	33.5
	4	SSH12.0x60	20	CNA*	24.9	25.0	25.0	25.0	24.9	25.0	25.0	25.0
GSE600	4	SSH12.0x80	20	CNA*	29.2	30.3	31.4	31.4	29	30.2	31.4	31.4
33200	4	SSH12.0x120	20	CNA*	30.8	33.9	36.2	36.5	30.8	33.8	36.1	36.5
	6	SSH12.0x60	22	CNA*	33.3	34.9	36.1	36.1	33.5	34.9	36.1	36.1
GSE660	6	SSH12.0x80	22	CNA*	33.9	37.4	42.7	44	33.9	37.4	42.9	44.1
	6	SSH12.0x120	22	CNA*	33.9	37.4	45.5	49.0	33.9	37.4	45.5	49.0
	6	SSH12.0x60	26	CNA*	36.6	37.1	37.1	37.1	36.6	37.1	37.1	37.1
GSE720	6	SSH12.0x80	26	CNA*	40	43.2	46.5	46.6	40	43.2	46.5	46.6
	6	SSH12.0x120	26	CNA*	40.0	44.2	52.5	53.7	40.0	44.2	52.5	53.7
	6	SSH12.0x60	28	CNA*	37.6	37.6	37.6	37.6	37.6	37.6	37.6	37.6
GSE780	6	SSH12.0x80	28	CNA*	42.9	45.5	47.2	47.2	42.9	45.5	47.2	47.2
	6	SSH12.0x120	28	CNA*	43.1	47.6	54.4	55.0	43.1	47.6	54.4	55.0
	6	SSH12.0x60	32	CNA*	38.0	38.0	38.0	38.0	38.0	38.0	38.0	38.0
GSE840	6	SSH12.0x80	32	CNA*	46.8	47.7	47.7	47.7	46.7	47.7	47.7	47.7
	6	SSH12.0x120	32	CNA*	49.3	54.0	55.6	55.6	49.3	53.8	55.6	55.6
	6	SSH12.0x60	34	CNA*	38.1	38.1	38.1	38.1	38.1	38.1	38.1	38.1
GSE900	6	SSH12.0x80	34	CNA*	47.7	47.8	47.8	47.8	47.7	47.8	47.8	47.8
	6	SSH12.0x120	34	CNA*	52.4	55.3	55.8	55.8	52.4	55.3	55.8	55.8
00500	6	SSH12.0x60	38	CNA*	38.3	38.3	38.3	38.3	38.3	38.3	38.3	38.3
GSE960	6	SSH12.0x80	38	CNA*	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2
	6	SSH12.0x120	38	CNA*	55.9	56.1	56.1	56.1	55.9	56.1	56.1	56.1
0054000	6	SSH12.0x60	40	CNA*	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4
GSE1020	6	SSH12.0x80	40	CNA*	48.3	48.3	48.3	48.3	48.3	48.3	48.3	48.3
	6	SSH12.0x120	40	CNA*	56.3	56.3	56.3	56.3	56.3	56.3	56.3	56.3

Page 141 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

		F			ities - Tir							
		Fasteners		- Liput						imber C2	24	
References		Header		oist			3.k				4.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
	2	SSH12.0x60	6	CNA*	1.9	2.4	3.5	4.5	7.4	8.2	9.9	10.4
GSE300	2	SSH12.0x80	6	CNA*	1.9	2.4	3.5	4.5	7.4	8.2	9.9	10.4
	2	SSH12.0x120	6	CNA*	1.9	2.4	3.5	4.5	7.4	8.2	9.9	10.4
	2	SSH12.0x60	8	CNA*	2.4	2.9	3.5	4.1	9.9	10.4	10.4	10.4
GSE340	2	SSH12.0x80	8	CNA*	2.4	3.1	4.3	5.1	9.9	10.4	10.4	10.4
	2	SSH12.0x120	8	CNA*	2.4	3.1	4.5	5.7	9.9	10.4	10.4	10.4
	4	SSH12.0x60	8	CNA*	2.4	3.1	4.5	5.7	9.9	10.9	13.2	14.3
GSE380	4	SSH12.0x80	8	CNA*	2.4	3.1	4.5	5.7	9.9	10.9	13.2	14.3
	4	SSH12.0x120	8	CNA*	2.4	3.1	4.5	5.7	9.9	10.9	13.2	14.3
	4	SSH12.0x60	12	CNA*	3.2	4.1	5.5	6.2	14.8	16.3	19.9	20.8
GSE440	4	SSH12.0x80	12	CNA*	3.2	4.1	6	7.7	14.8	16.3	19.9	20.8
	4	SSH12.0x120	12	CNA*	3.2	4.1	6	7.7	14.8	16.3	19.9	20.8
	4	SSH12.0x60	14	CNA*	3.5	4.3	4.8	5.3	17.2	19	20.8	20.8
GSE500	4	SSH12.0x80	14	CNA*	3.5	4.4	6	6.7	17.2	19	20.8	20.8
	4	SSH12.0x120	14	CNA*	3.5	4.4	6.6	7.8	10.0	10.0	10.0	10.0
	4	SSH12.0x60	16	CNA*	3.8	4.4	4.8	5.3	19.7	20.8	20.8	20.8
GSE540	4	SSH12.0x80	16	CNA*	3.8	4.7	6.1	6.6	19.7	20.8	20.8	20.8
	4	SSH12.0x120	16	CNA*	3.8	4.7	7	7.7	19.7	20.8	20.8	20.8
	4	SSH12.0x60	20	CNA*	4.2	5.1	5.4	5.8	20.8	20.8	20.8	20.8
GSE600	4	SSH12.0x80	20	CNA*	4.2	5.2	6.8	7.3	20.8	20.8	20.8	20.8
	4	SSH12.0x120	20	CNA*	4.2	5.2	7.8	8.5	20.8	20.8	20.8	20.8
	6	SSH12.0x60	22	CNA*	4.3	5.4	6	6.4	27.1	29.9	31.2	31.2
GSE660	6	SSH12.0x80	22	CNA*	4.3	5.4	7.5	8.1	27.1	29.9	31.2	31.2
	6	SSH12.0x120	22	CNA*	4.3	5.4	8.1	9.4	27.1	29.9	31.2	31.2
00==00	6	SSH12.0x60	26	CNA*	4.5	5.7	6.6	6.9	31.2	31.2	31.2	31.2
GSE720	6	SSH12.0x80	26	CNA*	4.5	5.7	8.2	8.7	31.2	31.2	31.2	31.2
	6	SSH12.0x120	26	CNA*	4.5	5.7	8.5	10.1	31.2	31.2	31.2	31.2
005700	6	SSH12.0x60	28	CNA*	4.6	5.8	6.6	7	31.2	31.2	31.2	31.2
GSE780	6	SSH12.0x80	28	CNA*	4.6	5.8	8.3	8.7	31.2	31.2	31.2	31.2
	6	SSH12.0x120	28	CNA*	4.6	5.8	8.7	10.2	31.2	31.2	31.2	31.2
005040	6	SSH12.0x60	32	CNA*	4.8	6	6.8	7	31.2	31.2	31.2	31.2
GSE840	6	SSH12.0x80	32	CNA*	4.8	6	8.5	8.9	31.2	31.2	31.2	31.2
	6	SSH12.0x120	32	CNA*	4.8	6	9	10.3	31.2	31.2	31.2	31.2
CCE000	6	SSH12.0x60	34	CNA*	4.8	6	6.4	6.6	31.2	31.2	31.2	31.2
GSE900	6	SSH12.0x80	34	CNA*	4.8	6	8.1	8.4	31.2	31.2	31.2	31.2
	6	SSH12.0x120	34	CNA*	4.8	6	9.1	9.7	31.2	31.2	31.2	31.2
GSE960	6	SSH12.0x60 SSH12.0x80	38 38	CNA*	4.9	6.2 6.2	6.9	7.1 8.9	31.2	31.2	31.2	31.2
GSE900	6	SSH12.0x80 SSH12.0x120	38	CNA*	4.9 4.9	6.2	8.7 9.3	10.4	31.2 31.2	31.2 31.2	31.2 31.2	31.2 31.2
	6	SSH12.0x120 SSH12.0x60	40	CNA*	4.9	6.2	9.3 6.6	6.8	31.2	31.2	31.2	31.2
GSE1020			l									
GSE1020	6	SSH12.0x80	40 40	CNA*	4.9	6.2	8.3	8.5	31.2	31.2	31.2	31.2
	Ö	SSH12.0x120	40	CNA*	4.9	6.2	9.4	9.9	31.2	31.2	31.2	31.2

The user shall verify the transversal tension in timber which is not included in these capacities.

^{*}Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

GSE/GSI 4 mm fire resistance R30 to EN 13501-2 - Timber to timber connection:

Performance declared: 30 minutes resistance to Fire (R30) to EN 13501-2 with all faces of the hanger exposed to the fire (Table 3). The performance values were determined by a static model developed by SST validated and verified by testing to EN 1365-2 and ETAG 015 by the Assessment Report *BTC 18511FA* issued by the Building Test Centre (UKAS accredited No. 0296 and member of the Fire Test Study Group, FTSP).

Scope of Certification: This certification applies to the following products and sizes GSE/GSI and GLE/GLI range of 4 mm thick (ETA-06/0270).

Table 1: GSE/GSI (4mm thickness) Hanger Height (mm)

			•	Seat	Width	(mm)		Ì
		90	100	120	140	160	180	200
	300	105	-	-	-	-	-	-
	340	125	1	1	-	-	-	-
	380	145	140	130	-	-	-	-
_	440	175	170	160	-	-	-	-
Length (mm)	500	205	200	190	180	170	160	150
	540	225	220	210	200	190	180	170
ıgt	600	255	250	240	230	220	210	200
Ler	660	285	280	270	260	250	240	230
¥	720	315	310	300	290	280	270	260
Blank	780	345	340	330	320	310	300	290
	840	375	370	360	350	340	330	320
	900	405	400	390	380	370	360	350
	960	435	430	420	410	400	390	380
	1020	465	460	450	440	430	420	410

Service Class: 1 and 2 to Eurocode 5

Fasteners: Fully nailed with CNA4,0x75mm or CSA5.0x80 (ETA-04/0013)

Timber: Untreated C24 strength class timber to EN338. The joist was exposed on 3 faces (sides and bottom) and the header on 2 faces (side and bottom).

Boundary conditions:

- Header height ≥ Joist height ≥ Hanger height + 10 mm
- Joist end shall be within the header face edges
- Member width ≥ 100 mm
- Gap between members ≤ 3 mm

Any other relevant National minimum requirement shall be fulfilled.

Table 1: Characteristic vertical load bearing capacity R30 to EN 13501-2, $F_{v,Rk,fi}$, in kN for GSE/4, GSI/4

			S	eat Wic	th (mm	1)	
		100	120	140	160	180	200
	300	-	-	-	-	-	-
	340	-	-	-	ı	ı	ı
	380	1	1	-	1	1	1
	440	2.52	2.52	2.52	2.52	ı	ı
Blank Length (mm)	500	3.55	3.55	2.52	2.52	2.52	2.52
٦ (د	540	4.72	4.72	3.55	3.55	3.55	3.55
ıgt	600	7.3	7.3	5.98	5.98	5.98	5.98
-e	660	8.65	8.65	7.3	7.3	7.3	7.3
돌	720	11.4	11.4	10.03	10.03	10.03	10.03
Slar	780	12.76	12.76	11.4	11.4	11.4	11.4
ш	840	15.44	15.44	14.11	14.11	14.11	14.11
	900	18.04	18.04	15.44	15.44	15.44	15.44
	960	19.32	19.32	16.75	16.75	16.75	16.75
	1020	20.57	20.57	19.32	19.32	19.32	19.32

$$E_{d,fi} \le R_{d,30,fi}$$

 $R_{d,30,fi} = F_{v,Rk,fi} / \gamma_{M,fi}$

where,

 $\textit{E}_{d,fi}$ is the design effect of actions for the fire situation, determined in accordance with EN 1995-1-2.

 $R_{d,30,fi}$ is the design resistance in the fire situation.

 $\gamma_{M,fi}$ is the material safety factor for the fire situation. The value is 1, unless otherwise specify in the National annex.

Table 2: Characteristic tension load R30 to EN 13501-2, R_{4.fi.30} in kN

Article		Seat Wid	lth (mm) - R _{4,}	_{fi,30} - Timber t	o Timber	
Code	100	120	140	160	180	200
GSE380	3,5	3,5	-	-	-	-
GSE440	4,4	4,4	-	-	-	-
GSE500	5,3	5,3	4,4	4,4	4,4	4,4
GSE540	5,9	5,9	5,0	5,0	5,0	5,0
GSE600	6,7	6,7	5,9	5,9	5,9	5,9
GSE660	7,6	7,6	6,7	6,7	6,7	6,7
GSE720	8,5	8,5	7,6	7,6	7,6	7,6
GSE780	9,4	9,4	8,5	8,5	8,5	8,5
GSE840	10,3	10,3	9,4	9,4	9,4	9,4
GSE900	11,1	11,1	10,3	10,3	10,3	10,3
GSE960	12,0	12,0	11,1	11,1	11,1	11,1
GSE1020	12,9	12,9	12,0	12,0	12,0	12,0

Table 3: Characteristic vertical load bearing capacity R30 to EN 13501-2, $F_{v,Rk,fi}$, in kN for GSE/4, GSI/4, GL24h timber

Timber: Untreated GL24h strength class timber to EN338. The joist was exposed on 3 faces (sides and bottom) and the header on 2 faces (side and bottom).

Boundary conditions:

- Header height ≥ Joist height ≥ Hanger height + 10 mm
- Joist end shall be within the header face edges
- · Member width ≥ 90 mm
- Gap between members ≤ 3 mm

				Seat	Width (mm)		
		90	100	120	140	160	180	200
	300	1.6	-	-	-	-	-	-
	340	1.9	-	-	-	-	-	-
	380	1.9	1	1	-	-	-	-
	440	3.1	2.52	2.52	2.52	2.52	ı	-
(mm)	500	3.9	3.55	3.55	2.52	2.52	2.52	2.52
n (r	540	4.8	4.72	4.72	3.55	3.55	3.55	3.55
Length (600	6.8	7.3	7.3	5.98	5.98	5.98	5.98
e	660	7.9	8.65	8.65	7.3	7.3	7.3	7.3
الج	720	10.1	11.4	11.4	10.03	10.03	10.03	10.03
Blank	780	11.3	12.76	12.76	11.4	11.4	11.4	11.4
ш	840	13.8	15.44	15.44	14.11	14.11	14.11	14.11
	900	16.3	18.04	18.04	15.44	15.44	15.44	15.44
	960	17.6	19.32	19.32	16.75	16.75	16.75	16.75
	1020	18.8	20.57	20.57	19.32	19.32	19.32	19.32

$$E_{d,fi} \le R_{d,30,fi}$$

 $R_{d,30,fi} = F_{v,Rk,fi} / \gamma_{M,fi}$

where,

 $\textit{E}_{d,fi}$ is the design effect of actions for the fire situation, determined in accordance with EN 1995-1-2.

 $R_{d,30,fi}$ is the design resistance in the fire situation.

 $\gamma_{M,fi}$ is the material safety factor for the fire situation. The value is 1, unless otherwise specify in the National annex.

Simplified calculation of E_{d,fi} according to Eurocode 5 part 1-2:

$$E_{d,fi} = \eta_{fi} E_d \tag{2.8}$$

where:

E_d is the design effect of actions for normal temperature design for the fundamental combination of actions, see EN 1990:2002;

 $\eta_{\rm fi}$ is the reduction factor for the design load in the fire situation.

(3) The reduction factor $\eta_{\rm fl}$ for load combination (6.10) in EN 1990:2002 should be taken as

$$\eta_{fi} = \frac{G_k + \psi_{fi} Q_{k,1}}{\gamma_0 G_k + \gamma_0 Q_{k,1}} \tag{2.9}$$

or, for load combinations (6.10a) and (6.10b) in EN 1990:2002, as the smallest value given by the following two expressions

$$\eta_{\rm fi} = \frac{G_{\rm k} + \psi_{\rm fi} \, Q_{\rm k,1}}{\gamma_{\rm G} \, G_{\rm k} + \gamma_{\rm Q,1} \, Q_{\rm k,1}} \tag{2.9a}$$

$$\eta_{fi} = \frac{G_{k} + \psi_{fi} Q_{k,1}}{\xi \gamma_{G} G_{k} + \gamma_{Q,1} Q_{k,1}}$$
(2.9b)

where:

Q_{k.1} is the characteristic value of the leading variable action;

 G_k is the characteristic value of the permanent action;

γ_G is the partial factor for permanent actions;

 $\gamma_{Q,1}$ is the partial factor for variable action 1;

is the combination factor for frequent values of variable actions in the fire situation, given either by $\psi_{1,1}$ or $\psi_{2,1}$, see EN 1991-1-1; AC_2

is a reduction factor for unfavourable permanent actions G.

GSE fire resistance R30 to EN1363-1:2020 – Timber to timber connection with large connector screw SSH

Performance declared: 30 minutes to fire (R30) to EN1363-1:2020 with all faces of the hanger exposed to fire. Performance values were determined by a static model developed by SST, validated and verified by testing according to EN1363-1:2020 and ETAG015 by the assessment reports FIRES-FR-070-22-AUNE2 and FIRES-FR-162-22-AUNE2 issued by FIRES s.r.o. (accredited testing laboratory n° S-159, EGOLF member).

Scope of certification: This certification applies to the following products and sizes of GSE/4X.

Table 1: GSE/4 Hanger Height (mm)

	Table 1: GSE/4 Hanger Height (IIIIII)									
		Seat Width (mm)								
		90	100	120	140	160	180	200		
	300	105	ı	ı	ı	ı	-	-		
	340	125	1	1	ı	ı	-	-		
	380	145	140	130	ı	ı	-	-		
_	440	175	170	160	-	-	-	-		
(mr	500	205	200	190	180	170	160	150		
n) (540	225	220	210	200	190	180	170		
Blank Length (mm)	600	255	250	240	230	220	210	200		
Ler	660	285	280	270	260	250	240	230		
nk	720	315	310	300	290	280	270	260		
Bla	780	345	340	330	320	310	300	290		
	840	375	370	360	350	340	330	320		
	900	405	400	390	380	370	360	350		
	960	435	430	420	410	400	390	380		
	1020	465	460	450	440	430	420	410		

Table 2: GSE/4 Number of SSH used on each hanger

		Seat Width (mm)								
		90	100	120	140	160	180	200		
	300	2	-	-	-	•	•	•		
	340	2	-	-	-	1	1	-		
	380	4	4	4	-	ı	•	•		
	440	4	4	4	-	ı	1	1		
Blank Length (mm)	500	4	4	4	2	2	2	2		
<u>ا</u> ر	540	4	4	4	4	4	4	4		
ıgt	600	4	4	4	4	4	4	4		
Ler	660	6	6	6	4	4	4	4		
ᅕ	720	6	6	6	6	6	6	6		
Bla	780	6	6	6	6	6	6	6		
	840	6	6	6	6	6	6	6		
	900	6	6	6	6	6	6	6		
	960	6	6	6	6	6	6	6		
	1020	6	6	6	6	6	6	6		

Service class: 1 and 2 according to Eurocode 5

Fasteners:

- Fully nailed or screwed with CNA4.0x75 or CSA5.0x80 (ETA-04/0013) in joist
- Screwed with SSH12.0x80 (ETA-21/0670) in header

Timber: Untreated C24 strength class timber to EN338. The joist was exposed on 3 faces (sides and bottom).

Boundary conditions:

- Header height ≥ Joist height ≥ Hanger height + 10 mm
- Joist end shall be within the header face edges
- Member width ≥ 100 mm
- Gap between member ≤ 3 mm

Any other relevant national minimum requirement shall be fulfilled.

Table 4: Characteristic vertical load bearing capacity R30 to EN 1363-1, F_{v,Rk,fi} in kN with C24 timber

			S	eat Wid	th (mm))	
		100	120	140	160	180	200
	300	-	-	-	-	-	-
	340	-	-	-	ı	-	-
	380	3	3	-	ı	-	•
	440	4.6	4.6	-	ı	-	-
Blank Length (mm)	500	5.3	5.3	3.5	3.5	3.5	3.5
_ n	540	6.5	6.5	5.2	5.2	5.2	5.2
ıgt	600	6.8	6.8	6.5	6.5	6.5	6.5
Ler	660	9.1	9.1	6.5	6.5	6.5	6.5
х	720	10	10	9.7	9.7	9.7	9.7
Bla	780	10.2	10.2	10.1	10.1	10.1	10.1
	840	10.3	10.3	10.1	10.1	10.1	10.1
	900	10.3	10.3	10.2	10.2	10.2	10.2
	960	10.4	10.4	10.3	10.3	10.3	10.3
	1020	10.4	10.4	10.3	10.3	10.3	10.3

E_{d.fi} ≤ R_{d.30.fi}

 $R_{d.30.fi} = F_{v.Rk.fi} / \Upsilon_{M.fi}$

Where:

E_{d,fi} is the design effect of actions for fire situation, determined in accordance with EN 1995-1-2.

 $R_{d,30,fi}$ is the design resistance in the fire situation.

 $\mathbf{Y}_{M,fi}$ is the material safety factor for fire situation. The value is 1, unless otherwise specify in the national annex.

Table 5: Characteristic vertical load bearing capacity R30 to EN 1363-1, Fax,Rk,fi in kN with C24 timber

			S	eat wid	dth (mi	m)	
		100	120	140	160	180	200
	380	2.3	2.3	-	-	-	•
	440	2.3	2.3	-	-	-	-
_	500	2.3	2.3	2.3	2.3	2.3	2.3
틸	540	2.3	2.3	2.3	2.3	2.3	2.3
length (mm)	600	2.3	2.3	2.3	2.3	2.3	2.3
at	660	3.4	3.4	3.4	3.4	3.4	3.4
e	720	3.4	3.4	3.4	3.4	3.4	3.4
놀	780	3.4	3.4	3.4	3.4	3.4	3.4
Blank	840	3.4	3.4	3.4	3.4	3.4	3.4
<u> </u>	900	3.4	3.4	3.4	3.4	3.4	3.4
	960	3.4	3.4	3.4	3.4	3.4	3.4
	1020	3.4	3.4	3.4	3.4	3.4	3.4

 $E_{d,fi} \! \leq R_{d,30,fi}$

 $R_{d,30,fi} = F_{ax,Rk,fi} / \Upsilon_{M,fi}$

Where:

E_{d,fi} is the design effect of actions for fire situation, determined in accordance with EN 1995-1-2.

 $R_{d,30,fi}$ is the design resistance in the fire situation.

 $\mathbf{Y}_{M,fi}$ is the material safety factor for fire situation. The value is 1, unless otherwise specify in the national annex.

Table 6: Characteristic vertical load bearing capacity R30 to EN 1363-1, $F_{\nu,Rk,fi}$ in kN with GL24h timber

Timber: Untreated GL24h strength class timber to EN338. The joist was exposed on 3 faces (sides and bottom).

Boundary conditions:

- Header height ≥ Joist height ≥ Hanger height + 10 mm
- Joist end shall be within the header face edges
- Member width ≥ 90 mm
- Gap between member ≤ 3 mm

Page 147 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

			Seat Width (mm)									
-		90	100	120	140	160	180	200				
	300		-	-	-	-	-	-				
	340		-	-	-	-	-	-				
	380		3.5	3.5	-	-	-	-				
	440		5.1	5.1	-	-	-	-				
Length (mm)	500		6	6	3.7	3.7	3.7	3.7				
۳) ر	540		6.8	6.8	5.8	5.8	5.8	5.8				
ıgt	600		7.1	7.1	6.8	6.8	6.8	6.8				
Ler	660		10.1	10.1	6.8	6.8	6.8	6.8				
Blank	720		10.5	10.5	10.3	10.3	10.3	10.3				
Ba	780		10.6	10.6	10.5	10.5	10.5	10.5				
	840		10.7	10.7	10.6	10.6	10.6	10.6				
	900		10.8	10.8	10.7	10.7	10.7	10.7				
	960		10.8	10.8	10.7	10.7	10.7	10.7				
	1020		10.9	10.9	10.8	10.8	10.8	10.8				

 $\mathsf{E}_{\mathsf{d},\mathsf{fi}}\!\leq\mathsf{R}_{\mathsf{d},30,\mathsf{fi}}$

 $R_{d,30,fi} = F_{v,Rk,fi} / Y_{M,fi}$

Where:

 $E_{d,fi}$ is the design effect of actions for fire situation, determined in accordance with EN 1995-1-2.

 $R_{d,30,fi}$ is the design resistance in the fire situation

 $\mathbf{Y}_{M,fi}$ is the material safety factor for fire situation. The value is 1, unless otherwise specify in the national annex.

Table 7: Characteristic vertical load bearing capacity R30 to EN 1363-1, F_{ax,Rk,fi} in kN with GL24h timber

				Seat	width	(mm)		
		90	100	120	140	160	180	200
	380	2.3	2.3	2.3	-	-	-	-
	440	2.3	2.3	2.3	-	-	-	-
_	500	2.3	2.3	2.3	2.3	2.3	2.3	2.3
(mm)	540	2.3	2.3	2.3	2.3	2.3	2.3	2.3
	600	2.3	2.3	2.3	2.3	2.3	2.3	2.3
at	660	3.4	3.4	3.4	3.4	3.4	3.4	3.4
length	720	3.4	3.4	3.4	3.4	3.4	3.4	3.4
녿	780	3.4	3.4	3.4	3.4	3.4	3.4	3.4
Blank	840	3.4	3.4	3.4	3.4	3.4	3.4	3.4
ш	900	3.4	3.4	3.4	3.4	3.4	3.4	3.4
	960	3.4	3.4	3.4	3.4	3.4	3.4	3.4
	1020	3.4	3.4	3.4	3.4	3.4	3.4	3.4

E_{d.fi} ≤ R_{d.30.fi}

 $R_{d,30,fi} = F_{ax,Rk,fi} / Y_{M,fi}$

Where:

E_{d,fi} is the design effect of actions for fire situation, determined in accordance with EN 1995-1-2.

 $R_{d,30,fi}$ is the design resistance in the fire situation.

 $\mathbf{Y}_{M,fi}$ is the material safety factor for fire situation. The value is 1, unless otherwise specify in the national annex.

GSE 4 mm fire resistance R30 to EN 13501-2 - timber to concrete connection :

Performance declared: 30 minutes resistance to Fire (R30) to EN 13501-2 with all faces of the hanger exposed to the fire (Table 3). The performance values were determined by a static model developed by SST validated and verified by testing to EN 1365-2 and ETAG 015 by the Assessment Report *BTC 19992FA* issued by the Building Test Centre (UKAS accredited No. 0296 and member of the Fire Test Study Group, FTSP).

Scope of Certification: This certification applies to the following products and sizes GSE range of 4mm thick (ETA-06/0270) for timber to concrete connection

Table 1: GSE/4 Hanger Height (mm)

		Seat Width (mm)									
		90	100	120	140	160	180	200			
	300	105	-	-	-	-	-	•			
	340	125	1	1	ı	-	ı	1			
	380	145	140	130	-	-	-	•			
	440	175	170	160	ı	-	ı	ı			
Ē	500	205	200	190	180	170	160	150			
Blank Length (mm)	540	225	220	210	200	190	180	170			
gŧ	600	255	250	240	230	220	210	200			
Ler	660	285	280	270	260	250	240	230			
¥	720	315	310	300	290	280	270	260			
Bla	780	345	340	330	320	310	300	290			
_ _	840	375	370	360	350	340	330	320			
	900	405	400	390	380	370	360	350			
	960	435	430	420	410	400	390	380			
	1020	465	460	450	440	430	420	410			

Table 2: GSE/4 Number of anchors used on each hanger

				Seat \	Nidth	(mm	1)						Seat V	Vidth (mm)		
		90	100	120	140	160	180	200			90	100	120	140	160	180	200
	300	105	-	-	-	-	•	•		300	2	-	•	•	•	-	-
	340	125	1	ı	1	-	1	1		340	2	-	ı	ı	1	-	-
	380	145	140	130	-	-	•	•		380	2	2	2	•	•	-	-
	440	175	170	160	1	-	ı	1		440	4	4	4	ı	ı	-	-
`	500	205	200	190	180	170	160	150	(mm)	500	4	4	4	2	2	2	2
-	540	225	220	210	200	190	180	170	٦	540	4	4	4	4	4	4	4
,	600	255	250	240	230	220	210	200	Length	600	4	4	4	4	4	4	4
	660	285	280	270	260	250	240	230	Le	660	6	6	6	4	4	4	4
	720	315	310	300	290	280	270	260		720	6	6	6	6	6	6	6
	780	345	340	330	320	310	300	290	Blank	780	6	6	6	6	6	6	6
	840	375	370	360	350	340	330	320		840	6	6	6	6	6	6	6
	900	405	400	390	380	370	360	350		900	6	6	6	6	6	6	6
	960	435	430	420	410	400	390	380		960	6	6	6	6	6	6	6
	1020	465	460	450	440	430	420	410		1020	6	6	6	6	6	6	6

Service Class: 1 and 2 to Eurocode 5

Fasteners:

- Fixed on concrete C25/30 support with FM-753 CRACK 3DG M12x110/10 or equivalent
- Fully nailed with CNA4,0x75mm or CSA5.0x80 (ETA-04/0013) on timber

Timber: Untreated C24 strength class timber to EN338. The joist was exposed on 3 faces (sides and bottom).

Boundary conditions:

- Header height ≥ Joist height ≥ Hanger height + 10 mm
- Joist end shall be within the header face edges
- Member width ≥ 100 mm
- Gap between members ≤ 3 mm

Any other relevant National minimum requirement shall be fulfilled.

Table 3: Characteristic vertical load bearing capacity R30 to EN 13501-2, F_{v,Rk,fi}, in kN for GSE/4

			S	Seat Wid	th (mm)	
		100	120	140	160	180	200
	300	-	-	-	-	-	-
	340	-	-	-	-	-	-
	380	10	10	-	-	-	-
	440	20	20	-	1	ı	1
Blank Length (mm)	500	20	20	10	10	10	10
п) (540	20	20	20	20	20	20
gt	600	20	20	20	20	20	20
Ler	660	20.57	20.57	20	20	20	20
¥	720	20.57	20.57	20.57	20.57	20.57	20.57
Bla	780	20.57	20.57	20.57	20.57	20.57	20.57
	840	20.57	20.57	20.57	20.57	20.57	20.57
	900	20.57	20.57	20.57	20.57	20.57	20.57
	960	20.57	20.57	20.57	20.57	20.57	20.57
	1020	20.57	20.57	20.57	20.57	20.57	20.57

$$E_{d,fi} \leq R_{d,30,fi}$$

 $R_{d,30,fi} = F_{v,Rk,fi} / \gamma_{M,fi}$

where,

E_{d,fi} is the design effect of actions for the fire situation, determined in accordance with EN 1995-1-2.

 $R_{\text{d},30,\text{fi}}$ is the design resistance in the fire situation.

 $\gamma_{M,fi}$ is the material safety factor for the fire situation. The value is 1, unless otherwise specify in the National annex.

Table 4: Characteristic tension load R30 to EN 13501-2, R_{4,fi,30} in kN

Article	Seat Width (mm) - R4,fi,30 - Timber to Concrete										
Code	100	120	140	160	180	200					
GSE380	2,1	2,1	-	-	-	-					
GSE440	4,1	4,1	-	-	-	-					
GSE500	4,1	4,1	2,1	2,1	2,1	2,1					
GSE540	4,1	4,1	4,1	4,1	4,1	4,1					
GSE600	4,1	4,1	4,1	4,1	4,1	4,1					
GSE660	6,2	6,2	4,1	4,1	4,1	4,1					
GSE720	6,2	6,2	6,2	6,2	6,2	6,2					
GSE780	6,2	6,2	6,2	6,2	6,2	6,2					
GSE840	6,2	6,2	6,2	6,2	6,2	6,2					
GSE900	6,2	6,2	6,2	6,2	6,2	6,2					
GSE960	6,2	6,2	6,2	6,2	6,2	6,2					
GSE1020	6,2	6,2	6,2	6,2	6,2	6,2					

Timber: Untreated GL24h strength class timber to EN338. The joist was exposed on 3 faces (sides and bottom).

Boundary conditions:

- Header height ≥ Joist height ≥ Hanger height + 10 mm
- Joist end shall be within the header face edges
- Member width ≥ 90 mm
- · Gap between members ≤ 3 mm

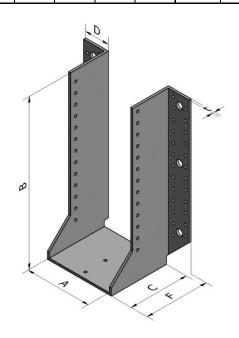
				Sea	t Width	(mm)		
		90	100	120	140	160	180	200
	300	7.2	-	-	-	-	-	-
	340	7.2	ı	1	-	ı	-	-
	380	7.2	10	10	-	-	-	-
	440	13.0	20	20	-	ı	-	-
(mm)	500	14.1	20	20	10	10	10	10
n) (540	14.4	20	20	20	20	20	20
Length	600	14.4	20	20	20	20	20	20
Ler	660	18.4	20.57	20.57	20	20	20	20
	720	20.6	20.57	20.57	20.57	20.57	20.57	20.57
Blank	780	21.6	20.57	20.57	20.57	20.57	20.57	20.57
	840	21.6	20.57	20.57	20.57	20.57	20.57	20.57
	900	21.6	20.57	20.57	20.57	20.57	20.57	20.57
	960	21.6	20.57	20.57	20.57	20.57	20.57	20.57
	1020	21.6	20.57	20.57	20.57	20.57	20.57	20.57

$$\begin{aligned} & \boldsymbol{E}_{\text{d,fi}} \leq \boldsymbol{R}_{\text{d,30,fi}} \\ & \boldsymbol{R}_{\text{d,30,fi}} = \boldsymbol{F}_{\text{v,Rk,fi}} \ / \ \boldsymbol{\gamma}_{\text{M,fi}} \end{aligned}$$

where.

 $\emph{\textbf{E}}_{d,fi}$ is the design effect of actions for the fire situation, determined in accordance with EN 1995-1-2.

 $R_{\text{d},30,\text{fi}}$ is the design resistance in the fire situation.


 $\gamma_{M,fi}$ is the material safety factor for the fire situation. The value is 1, unless otherwise specify in the National annex.

D19 GSE-AL Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GSE-AL	Steel ref 1 - Steel ref 2	-

Dimensions

		Dimene	iono In	nm1					Н	loles		
Blank		Dimens	ions [ii					Hea	der		Jo	ist
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
500/4X-AL	135-200	(500-A)/2	110	45.5	118	4	22	Ø5	2	Ø13	12	Ø5
540/4X-AL	135-200	(540-A)/2	110	45.5	118	4	26	Ø5	4	Ø13	14	Ø5
600/4X-AL	135-200	(600-A)/2	110	45.5	118	4	32	Ø5	4	Ø13	18	Ø5
660/4X-AL	135-200	(660-A)/2	110	45.5	118	4	38	Ø5	4	Ø13	20	Ø5
720/4X-AL	135-200	(720-A)/2	110	45.5	118	4	44	Ø5	6	Ø13	24	Ø5
780/4X-AL	135-200	(780-A)/2	110	45.5	118	4	50	Ø5	6	Ø13	26	Ø5
840/4X-AL	135-200	(840-A)/2	110	45.5	118	4	56	Ø5	6	Ø13	30	Ø5
900/4X-AL	135-200	(900-A)/2	110	45.5	118	4	62	Ø5	6	Ø13	32	Ø5
960/4X-AL	135-200	(960-A)/2	110	45.5	118	4	66	Ø5	6	Ø13	34	Ø5
1020/4X-AL	135-200	(1020-A)/2	110	45.5	118	4	74	Ø5	6	Ø13	38	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Page 152 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

Parameters have to be used with equation in Annex C.

k_{H.1} for Joist Hanger GSE-AL and GSI-AL - Full nailing - F1

k _{H,1} fo	r Joi	st Ha	inge	r GSI	E-AL	. and	GSI	-AL -	Full	naııı	ng -	F1								
	500	-AL	540	-AL	600	-AL	660	-AL	720	-AL	78	0-AL	840	0-AL	900	0-AL	96	0-AL	102	20-AL
	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	пн	nJ	nн	nJ	nн	nJ	пн	nJ	nн	nJ
	22	12	26	14	32	18	38	20	44	24	50	26	56	30	62	32	66	34	74	38
Α	В	k H.1	В	k H.1	В	k H.1	В	k H.1	В	k H.1	В	k H.1	В	k H.1	В	k H.1	В	k H.1	В	k _{H.1}
136	182	33.4	202	41.6	232	55.0	262	70.9	292	88.2	322	107.8	352	128.9	382	152.3	412	177.7	420	204.5
138	181	33.1	201	41.2	231	54.6	261	70.4	291	87.6	321	107.2	351	128.2	381	151.5	411	176.8	441	203.5
140	180	32.7	200	40.8	230	54.1	260	69.8	290	87	320	106.5	350	127.4	380	150.7	410	175.9	440	202.6
142	179	32.4	199	40.4	229	53.6	259	69.3	289	86.4	319	105.8	349	126.7	379	149.9	409	175.1	439	201.7
144	178	32.0	198	40.0	228	53.2	258	68.8	288	85.8	318	105.2	348	126	378	149.1	408	174.2	438	200.7
146	177	31.7	197	39.6	227	52.7	257	68.3	287	85.2	317	104.5	347	125.2	377	148.3	407	173.3	437	199.8
148	176	31.4	196	39.2	226	52.3	256	67.7	286	84.6	316	103.8	346	124.5	376	147.5	406	172.5	436	198.9
150	175	31.0	195	38.8	225	51.8	255	67.2	285	84	315	103.2	345	123.8	375	146.7	405	171.6	435	198
152	174	30.7	194	38.4	224	51.4	254	66.7	284	83.4	314	102.5	344	123.1	374	146	404	170.8	434	197
154	173	30.3	193	38.0	223	50.9	253	66.2	283	82.8	313	101.9	343	122.3	373	145.2	403	169.9	433	196.1
156	172	30.0	192	37.7	222	50.5	252	65.6	282	82.2	312	101.2	342	121.6	372	144.4	402	169.1	432	195.2
158	171	29.7	191	37.3	221	50.0	251	65.1	281	81.6	311	100.5	341	120.9	371	143.6	401	168.2	431	194.3
160	170	29.3	190	36.9	220	49.5	250	64.6	280	81.1	310	99.9	340	120.2	370	142.8	400	167.4	430	193.4
162	169	29.0	189	36.5	219	49.1	249	64.1	279	80.5	309	99.2	339	119.5	369	142	399	166.5	429	192.5
164	168	28.6	188	36.1	218	48.6	248	63.5	278	79.9	308	98.6	338	118.7	368	141.2	398	165.7	428	191.5
166	167	28.3	187	35.7	217	48.2	247	63	277	79.3	307	97.9	337	118	367	140.5	397	164.8	427	190.6
168	166	28.0	186	35.3	216	47.8	246	62.5	276	78.7	306	97.3	336	117.3	366	139.7	396	164	426	189.7
170	165	27.6	185	35.0	215	47.3	245	62	275	78.1	305	96.6	335	116.6	365	138.9	395	163.1	425	188.8
172	164	27.3	184	34.6	214	46.9	244	61.5	274	77.6	304	96	334	115.9	364	138.1	394	162.3	424	187.9
174	163	27.0	183	34.2	213	46.4	243	61	273	77	303	95.3	333	115.2	363	137.4	393	161.4	423	187
176	162	26.6	182	33.8	212	46.0	242	60.5	272	76.4	302	94.7	332	114.5	362	136.6	392	160.6	422	186.1
178	161	26.3	181	33.5	211	45.5	241	60	271	75.8	301	94.1	331	113.8	361	135.8	391	159.8	421	185.2
180	160	26.0	180	33.1	210	45.1	240	59.4	270	75.3	300	93.4	330	113.1	360	135	390	158.9	420	184.3
182	159	25.7	179	32.7	209	44.7	239	58.9	269	74.7		92.8	329	112.4	359	134.3	389	158.1	419	183.4
184	158	25.3	178	32.3	208	44.2			268	74.1	298	92.1		111.7	358		388	157.3	418	182.5
186	157	25.0	177	32.0	207	43.8	237	57.9	267	73.6	297	91.5	327	111	357	132.7	387	156.4	417	181.6
188	156	24.7	176	31.6	206	43.3	236	57.4	266	73	296	90.9	326	110.3	356	132	386	155.6	416	180.7
190	155	24.4	175	31.2	205	42.9	235	56.9	265	72.4	295	90.2	325	109.6	355	131.2	385	154.8	415	179.8
192	154	24.0	174	30.9	204	42.5	234	56.4	264	71.9	294	89.6	324	108.9	354	130.5	384	153.9	414	178.9
194	153	23.7	173	30.5	203	42.1	233	55.9	263	71.3	293	89	323	108.2	353	129.7	383	153.1	413	178.1
196	152	23.4	172	30.1	202	41.6	232	55.4	262	70.7	292	88.4	322	107.5	352	128.9	382	152.3	412	177.2
198	151	23.1	171	29.8	201	41.2	231	54.9	261	70.2	291	87.7	321	106.8	351	128.2	381	151.5	411	176.3
200	150	22.8	170	29.4	200	40.8	230	54.4	260	69.6	290	87.1	320	106.1	350	127.4	380	150.7	410	175.4

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation.

Page 153 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

$k_{\text{H},1}$ for Joist Hanger GSE-AL and GSI-AL - Partial nailing - F1

	500	-AL	540	-AL	600	-AL	660	-AL	720	-AL	780	-AL	840	-AL	900	-AL	960	-AL	102	0-AL
	пн	nJ	nн	nJ	пн	nJ	nн	nJ	nн	Ŋ	nн	nJ	пн	nJ	nн	nJ	пн	nJ	nн	nл
	12	6	14	8	18	10	20	10	24	12	26	14	30	16	32	16	34	18	38	20
Α	В	k H.1	В	k H.1	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}	В	k H.1						
136	182	20.6	202	24.4	232	31.7	262	40.6	292	49.7	322	59.5	352	70.6	382	83.2	412	96.1	442	109.9
138	181	20.4	201	24.2	231	31.5	261	40.3	291	49.4	321	59.2	351	70.2	381	82.8	411	95.7	441	109.4
140	180	20.2	200	23.9	230	31.2	260	40	290	49	320	58.8	350	69.8	380	82.4	410	95.2	440	108.9
142	179	20.0	199	23.7	229	31.5	259	39.7	289	48.7	319	58.4	349	69.4	379	81.9	409	94.6	439	108.4
144	178	19.8	198	23.5	228	31.3	258	39.4	288	48.4	318	58.1	348	69	378	81.5	408	94.1	438	107.9
146	177	19.6	197	23.3	227	31.0	257	39.1	287	48	317	57.7	347	68.6	377	81.1	407	93.7	437	107.4
148	176	19.3	196	23.0	226	30.8	256	38.8	286	47.7	316	57.4	346	68.2	376	80.7	406	93.2	436	106.9
150	175	19.1	195	22.8	225	30.5	255	38.5	285	47.4	315	57	345	67.8	375	80.2	405	92.7	435	106.4
152	174	18.9	194	22.6	224	30.3	254	38.2	284	47	314	56.6	344	67.4	374	79.8	404	92.3	434	105.9
154	173	18.7	193	22.4	223	30.0	253	37.9	283	46.7	313	56.3	343	67	373	79.4	403	91.8	433	105.4
156	172	18.5	192	22.2	222	29.7	252	37.6	282	46.4	312	55.9	342	66.6	372	79	402	91.4	432	105
158	171	18.3	191	21.9	221	29.5	251	37.3	281	46	311	55.6	341	66.2	371	78.5	401	90.9	431	104.5
160	170	18.1	190	21.7	220	29.2	250	37	280	45.7	310	55.2	340	65.8	370	78.1	400	90.5	430	104
162	169	17.9	189	21.5	219	29.0	249	36.7	279	45.4	309	54.9	339	65.4	369	77.7	399	90	429	103.5
164	168	17.7	188	21.3	218	28.7	248	36.4	278	45.1	308	54.5	338	65.1	368	77.3	398	89.6	428	103
166	167	17.5	187	21.1	217	28.5	247	36.2	277	44.7	307	54.2	337	64.7	367	76.9	397	89.1	427	102.5
168	166	17.3	186	20.8	216	28.2	246	35.9	276	44.4	306	53.8	336	64.3	366	76.4	396	88.7	426	102
170	165	17.1	185	20.6	215	28.0	245	35.6	275	44.1	305	53.5	335	63.9	365	76	395	88.2	425	101.6
172	164	16.9	184	20.4	214	27.7	244	35.3	274	43.8	304	53.1	334	63.5	364	75.6	394	87.8	424	101.1
174	163	16.7	183	20.2	213	27.5	243	35	273	43.4	303	52.8	333	63.1	363	75.2	393	87.4	423	100.6
176	162	16.5	182	20.0	212	27.2	242	34.7	272	43.1	302	52.4	332	62.7	362	74.8	392	86.9	422	100.1
178	161	16.3	181	19.8	211	27.0	241	34.4	271	42.8	301	52.1	331	62.4	361	74.3	391	86.5	421	99.7
180	160	16.1	180	19.5	210	26.7	240	34.1	270	42.5	300	51.7	330	62	360	73.9	390	86	420	99.2
182	159	15.9	179	19.3	209	26.5	239	33.9	269	42.2	299	51.4	329	61.6	359	73.5	389	85.6	419	98.7
184	158	15.7	178	19.1	208	26.2	238	33.6	268	41.8	298	51	328	61.2	358	73.1	388	85.1	418	98.2
186	157	15.5	177	18.9	207	26.0	237	33.3	267	41.5	297	50.7	327	60.8	357	72.7	387	84.7	417	97.8
188	156	15.3	176	18.7	206	25.7	236	33	266	41.2	296	50.3	326	60.5	356	72.3	386	84.3	416	97.3
190	155	15.1	175	18.5	205	25.5	235	32.7	265	40.9	295	50	325	60.1	355	71.9	385	83.8	415	96.8
192	154	14.9	174	18.3	204	25.2	234	32.4	264	40.6	294	49.7	324	59.7	354	71.5	384	83.4	414	96.3
194	153	14.8	173	18.1	203	25.0	233	32.2	263	40.3	293	49.3	323	59.3	353	71.1	383	83	413	95.9
196	152	14.6	172	17.8	202	24.8	232	31.9	262	40	292	49	322	59	352	70.7	382	82.5	412	95.4
198	151	14.4	171	17.6	201	24.5	231	31.6		39.6	291	48.6	321	58.6	351	70.2	381	82.1	411	94.9
200	150	14.2	170	17.4	200	24.3	230	31.3	260	39.3	290	48.3	320	58.2	350	69.8	380	81.7	410	94.5

In the case of intermediate width, $k_{\text{\scriptsize H},1}$ can be calculated by linear interpolation.

Page 154 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

$k_{\text{H,2}} \, \text{for GSE-AL}$ and GSI-AL - Full or partial nailing - F2

Blank	1000111011	nber of nails header		K _{H2}
	Full nailing	Partial nailing	Full nailing	Partial nailing
500	22	12	16	9.0
540	26	14	21.6	12.0
600	32	18	31.7	19.2
660	38	20	43.6	23.4
720	44	24	57.5	33.2
780	50	26	73.3	38.8
840	56	30	91	51.1
900	62	32	110.6	57.9
960	68	34	132.1	72.8
1020	74	38	155.6	80.9

Page 155 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

Characteristic capacity for GSE-AL/4 - with connector screw SSH/SSF without predrilling

			Produ	ct capac	ities - Tir	mber to T	imber - L	_arge cor	nector s	crew		
		Fastener						stic capa			24	
References		Header	J	oist			1.k	•			2.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
CCEEOOAL	2	SSH12.0x60	12	CNA*	10.1	10.1	10.1	10.1	9.9	10.0	10.1	10.1
GSE500AL	2	SSH12.0x120	12	CNA*	14.6	14.8	14.9	14.9	12.3	12.6	14.3	14.9
CCE 40AL	4	SSH12.0x60	14	CNA*	16.7	16.9	17.1	17.1	15.8	16.2	16.8	17.0
GSE540AL	4	SSH12.0x120	14	CNA*	21.5	23.6	24.7	24.9	19.6	20.3	21.6	21.9
CCECOOAL	4	SSH12.0x60	18	CNA*	18.6	18.6	18.6	18.6	18.3	18.5	18.6	18.6
GSE600AL	4	SSH12.0x120	18	CNA*	26.6	27.1	27.5	27.5	23.0	23.5	26.7	27.5
GSE660AL	4	SSH12.0x60	20	CNA*	18.6	18.6	18.6	18.6	18.6	18.6	18.6	18.6
GSEOOUAL	4	SSH12.0x120	20	CNA*	27.3	27.5	27.5	27.5	23.6	25.6	27.5	27.5
GSE720AL	6	SSH12.0x60	24	CNA*	28.0	28.0	28.0	28.0	27.4	27.9	28.0	28.0
GSE/20AL	6	SSH12.0x120	24	CNA*	36.9	40.2	41.5	41.5	34.3	35.2	40.0	41.5
GSE780AL	6	SSH12.0x60	26	CNA*	28.6	28.6	28.6	28.6	28.4	28.6	28.6	28.6
GSETOUAL	6	SSH12.0x120	26	CNA*	40.0	41.8	42.3	42.3	35.7	36.5	42.3	42.3
CCE040AI	6	SSH12.0x60	30	CNA*	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8
GSE840AL	6	SSH12.0x120	30	CNA*	42.5	42.7	42.7	42.7	39.7	42.7	42.7	42.7
GSE900AL	6	SSH12.0x60	32	CNA*	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.0
GSE900AL	6	SSH12.0x120	32	CNA*	42.9	42.9	42.9	42.9	42.9	42.9	42.9	42.9
GSE960AL	6	SSH12.0x60	34	CNA*	29.2	29.2	29.2	29.2	29.2	29.2	29.2	29.2
GSE96UAL	6	SSH12.0x120	34	CNA*	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2
CSE1020AL	6	SSH12.0x60	38	CNA*	29.3	29.3	29.3	29.3	29.3	29.3	29.3	29.3
GSE1020AL	6	SSH12.0x120	38	CNA*	43.4	43.4	43.4	43.4	43.4	43.4	43.4	43.4

⁽¹⁾SSH can be replaced by SSF

			Produ	ct capac	ities - Tir	mber to T	imber - L	_arge cor	nector s	crew		
		Fastener	S			С	haracteri	stic capa	cities - T	imber C2	24	
References		Header	J	oist		R	3.k			R	4.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
CCEEOOAL	2	SSH12.0x60	12	CNA*	3.9	3.9	3.9	3.9	5.0	5.0	5.0	5.0
GSE500AL	2	SSH12.0x120	12	CNA*	5.8	5.8	5.8	5.8	5.0	5.0	5.0	5.0
CSE 40AL	4	SSH12.0x60	14	CNA*	7.0	7.0	7.0	7.0	10.0	10.0	10.0	10.0
GSE540AL	4	SSH12.0x120	14	CNA*	7.4	8.8	10.4	10.4	10.0	10.0	10.0	10.0
CSEGOOM	4	SSH12.0x60	18	CNA*	6.7	6.7	6.7	6.7	10.0	10.0	10.0	10.0
GSE600AL	4	SSH12.0x120	18	CNA*	9.2	9.9	9.9	9.9	10.0	10.0	10.0	10.0
CCECCOAL	4	SSH12.0x60	20	CNA*	5.7	5.7	5.7	5.7	10.0	10.0	10.0	10.0
GSE660AL	4	SSH12.0x120	20	CNA*	8.4	8.4	8.4	8.4	10.0	10.0	10.0	10.0
GSE720AL	6	SSH12.0x60	24	CNA*	7.8	7.8	7.8	7.8	15.0	15.0	15.0	15.0
GSE/2UAL	6	SSH12.0x120	24	CNA*	11.4	11.6	11.6	11.6	15.0	15.0	15.0	15.0
GSE780AL	6	SSH12.0x60	26	CNA*	7.4	7.4	7.4	7.4	15.0	15.0	15.0	15.0
GSETOUAL	6	SSH12.0x120	26	CNA*	11.0	11.0	11.0	11.0	15.0	15.0	15.0	15.0
GSE840AL	6	SSH12.0x60	30	CNA*	7.0	7.0	7.0	7.0	15.0	15.0	15.0	15.0
GSE64UAL	6	SSH12.0x120	30	CNA*	10.4	10.4	10.4	10.4	15.0	15.0	15.0	15.0
CSEOOOAL	6	SSH12.0x60	32	CNA*	6.5	6.5	6.5	6.5	15.0	15.0	15.0	15.0
GSE900AL	6	SSH12.0x120	32	CNA*	9.6	9.6	9.6	9.6	15.0	15.0	15.0	15.0
GSE960AI	6	SSH12.0x60	34	CNA*	6.4	6.4	6.4	6.4	15.0	15.0	15.0	15.0
GSESOUAI	6	SSH12.0x120	34	CNA*	9.4	9.4	9.4	9.4	15.0	15.0	15.0	15.0
GSE1020AL	6	SSH12.0x60	38	CNA*	6.0	6.0	6.0	6.0	15.0	15.0	15.0	15.0
GSETUZUAL	6	SSH12.0x120	38	CNA*	8.8	8.8	8.8	8.8	15.0	15.0	15.0	15.0

(1) SSH can be replaced by SSF

The user shall verify the transversal tension in timber, which is not included in these capacities.

*Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

There is no improvement of the characteristic values between SSH12.0x60 and SSH12.0x100 without pre drilling.

Characteristic capacity for GSE-AL/4 - with connector screw SSH/SSF with predrilling

			Produ	ct capac	ities - Ti	mber to T	imber - L	arge cor	nector s	crew		
		Fastener	S			С	haracteri	stic capa	cities - T	imber C2	24	
References		Header	J	oist		R	1.k			R	2.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
	2	SSH12.0x60	12	CNA*	12.9	13.0	13.1	13.1	12.3	12.6	13.1	13.1
GSE500AL	2	SSH12.0x80	12	CNA*	15.2	15.6	16.3	16.4	12.3	12.6	14.3	15.4
	2	SSH12.0x120	12	CNA*	17.7	18.2	18.8	18.9	12.3	12.6	14.3	15.4
	4	SSH12.0x60	14	CNA*	20.2	20.9	21.8	22.1	19.6	20.3	21.6	21.9
GSE540AL	4	SSH12.0x80	14	CNA*	21.5	23.2	25.4	26.1	19.6	20.3	21.6	21.9
	4	SSH12.0x120	14	CNA*	21.5	23.8	28.9	30.0	19.6	20.3	21.6	21.9
	4	SSH12.0x60	18	CNA*	23.6	24.0	24.2	24.2	23.0	23.5	24.2	24.2
GSE600AL	4	SSH12.0x80	18	CNA*	26.8	28.1	29.9	30.3	23	23.5	26.7	28.8
	4	SSH12.0x120	18	CNA*	27.7	30.6	34.2	34.8	23.0	23.5	26.7	28.8
	4	SSH12.0x60	20	CNA*	24.2	24.2	24.2	24.2	23.6	24.2	24.2	24.2
GSE660AL	4	SSH12.0x80	20	CNA*	28.7	29.6	30.4	30.4	23.6	25.6	30.4	30.4
	4	SSH12.0x120	20	CNA*	30.8	33.6	35.2	35.4	23.6	25.6	31.1	33.5
	6	SSH12.0x60	24	CNA*	35.1	36.1	36.5	36.5	34.3	35.2	36.5	36.5
GSE720AL	6	SSH12.0x80	24	CNA*	36.9	40.4	44.7	45.6	34.3	35.2	40	43.1
	6	SSH12.0x120	24	CNA*	36.9	40.8	49.6	51.6	34.3	35.2	40.0	43.1
	6	SSH12.0x60	26	CNA*	36.7	37.2	37.2	37.2	35.7	36.5	37.2	37.2
GSE780AL	6	SSH12.0x80	26	CNA*	40	43.3	46.6	46.7	35.7	36.5	44.5	46.7
	6	SSH12.0x120	26	CNA*	40.0	44.2	52.6	53.8	35.7	36.5	44.5	47.9
	6	SSH12.0x60	30	CNA*	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5
GSE840AL	6	SSH12.0x80	30	CNA*	45	46.7	47.1	47.1	39.7	43.8	47.1	47.1
	6	SSH12.0x120	30	CNA*	46.2	51.0	54.9	54.9	39.7	43.8	53.4	54.9
	6	SSH12.0x60	32	CNA*	37.8	37.8	37.8	37.8	37.8	37.8	37.8	37.8
GSE900AL	6	SSH12.0x80	32	CNA*	46.6	47.4	47.4	47.4	43	47.4	47.4	47.4
	6	SSH12.0x120	32	CNA*	49.3	53.8	55.3	55.3	43.0	47.5	55.3	55.3
	6	SSH12.0x60	34	CNA*	38.0	38.0	38.0	38.0	38.0	38.0	38.0	38.0
GSE960AL	6	SSH12.0x80	34	CNA*	47.6	47.7	47.7	47.7	46.3	47.7	47.7	47.7
	6	SSH12.0x120	34	CNA*	52.4	55.2	55.6	55.6	46.3	51.1	55.6	55.6
	6	SSH12.0x60	38	CNA*	38.1	38.1	38.1	38.1	38.1	38.1	38.1	38.1
GSE1020AL	6	SSH12.0x80	38	CNA*	47.9	47.9	47.9	47.9	47.9	47.9	47.9	47.9
	6	SSH12.0x120	38	CNA*	55.6	55.8	55.8	55.8	52.9	55.8	55.8	55.8

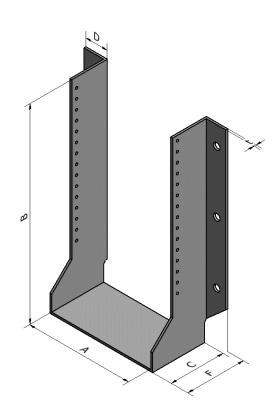
Page 157 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

			Produ	ct capac	ities - Tir	mber to T	imber - L	arge cor	nector s	crew		
		Fastener								imber C2	24	
References		Header		oist			3.k	•			4.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
	2	SSH12.0x60	12	CNA*	5.1	5.1	5.1	5.1	10.4	10.4	10.4	10.4
GSE500AL	2	SSH12.0x80	12	CNA*	6.4	6.4	6.4	6.4	10.4	10.4	10.4	10.4
	2	SSH12.0x120	12	CNA*	6.5	7.4	7.4	7.4	10.4	10.4	10.4	10.4
	4	SSH12.0x60	14	CNA*	7.4	8.8	9.2	9.2	17.2	19	20.8	20.8
GSE540AL	4	SSH12.0x80	14	CNA*	7.4	8.8	11.4	11.5	17.2	19	20.8	20.8
	4	SSH12.0x120	14	CNA*	7.4	8.8	11.4	13.4	17.2	19	20.8	20.8
	4	SSH12.0x60	18	CNA*	8.7	8.7	8.7	8.7	20.8	20.8	20.8	20.8
GSE600AL	4	SSH12.0x80	18	CNA*	9.2	10.8	10.9	10.9	20.8	20.8	20.8	20.8
	4	SSH12.0x120	18	CNA*	9.2	10.8	12.7	12.7	20.8	20.8	20.8	20.8
	4	SSH12.0x60	20	CNA*	7.4	7.4	7.4	7.4	20.8	20.8	20.8	20.8
GSE660AL	4	SSH12.0x80	20	CNA*	9.3	9.3	9.3	9.3	20.8	20.8	20.8	20.8
	4	SSH12.0x120	20	CNA*	10	10.8	10.8	10.8	20.8	20.8	20.8	20.8
	6	SSH12.0x60	24	CNA*	10.2	10.2	10.2	10.2	29.6	31.2	31.2	31.2
GSE720AL	6	SSH12.0x80	24	CNA*	11.4	12.8	12.8	12.8	29.6	31.2	31.2	31.2
	6	SSH12.0x120	24	CNA*	11.4	13.3	14.9	14.9	29.6	31.2	31.2	31.2
	6	SSH12.0x60	26	CNA*	9.7	9.7	9.7	9.7	31.2	31.2	31.2	31.2
GSE780AL	6	SSH12.0x80	26	CNA*	12	12.1	12.1	12.1	31.2	31.2	31.2	31.2
	6	SSH12.0x120	26	CNA*	12	14	14.2	14.2	31.2	31.2	31.2	31.2
	6	SSH12.0x60	30	CNA*	9.1	9.1	9.1	9.1	31.2	31.2	31.2	31.2
GSE840AL	6	SSH12.0x80	30	CNA*	11.4	11.4	11.4	11.4	31.2	31.2	31.2	31.2
	6	SSH12.0x120	30	CNA*	13.2	13.3	13.3	13.3	31.2	31.2	31.2	31.2
	6	SSH12.0x60	32	CNA*	8.4	8.4	8.4	8.4	31.2	31.2	31.2	31.2
GSE900AL	6	SSH12.0x80	32	CNA*	10.6	10.6	10.6	10.6	31.2	31.2	31.2	31.2
	6	SSH12.0x120	32	CNA*	12.3	12.3	12.3	12.3	31.2	31.2	31.2	31.2
	6	SSH12.0x60	34	CNA*	8.3	8.3	8.3	8.3	31.2	31.2	31.2	31.2
GSE960AL	6	SSH12.0x80	34	CNA*	10.4	10.4	10.4	10.4	31.2	31.2	31.2	31.2
	6	SSH12.0x120	34	CNA*	12.1	12.1	12.1	12.1	31.2	31.2	31.2	31.2
	6	SSH12.0x60	38	CNA*	7.8	7.8	7.8	7.8	31.2	31.2	31.2	31.2
GSE1020AL	6	SSH12.0x80	38	CNA*	9.8	9.8	9.8	9.8	31.2	31.2	31.2	31.2
	6	SSH12.0x120	38	CNA*	11.4	11.4	11.4	11.4	31.2	31.2	31.2	31.2

The user shall verify the transversal tension in timber, which is not included in these capacities.

GSE-AL fire resistance R30 to EN 13501-2

See GSE Joist hanger


^{*}Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

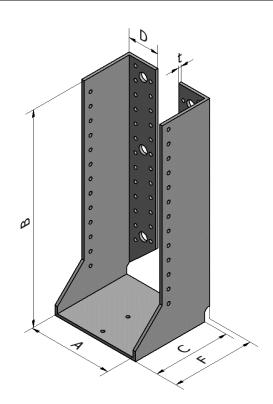
D20 GSEXL Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GSEXL	Steel ref 1 - Steel ref 2	-

Dimensions

		Dim	oncione l	mm1					Holes	
Blank		Dilli	ensions				Hea	ader	Jo	ist
	Α	В	С	D	F	t	Qty	Size	Qty	Size
720	201-270	(720 - A)/2	110	42.5	118	4	4	Ø14	16	Ø5
1020	201-270	(1020 - A)/2	110	42.5	118	4	6	Ø14	30	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-

Characteristic capacity for GSEXL - Full nailing - F1 F2 F3 F4 - timber to rigid support


See formulas from Annex C for characteristic values calculation.

D21 GSI Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GSI	Steel ref 1 - Steel ref 2	-

Dimensions

Dimension	13								F	loles		
Blank		Dimer	sions [mm]				Hea	ıder		Jo	ist
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
300/4X	76-110	(300-A)/2	110	45.5	118	4	12	Ø5	2	Ø13	6	Ø5
340/4X	76-110	(340-A)/2	110	45.5	118	4	16	Ø5	2	Ø13	8	Ø5
380/4X	76-136	(380-A)/2	110	45.5	118	4	16	Ø5	4	Ø13	8	Ø5
440/4X	76-136	(440-A)/2	110	45.5	118	4	22	Ø5	4	Ø13	12	Ø5
500/4X	76-136	(500-A)/2	110	45.5	118	4	28	Ø5	4	Ø13	14	Ø5
540/4X	76-136	(540-A)/2	110	45.5	118	4	32	Ø5	4	Ø13	16	Ø5
600/4X	76-136	(600-A)/2	110	45.5	118	4	38	Ø5	4	Ø13	20	Ø5
660/4X	76-136	(660-A)/2	110	45.5	118	4	44	Ø5	6	Ø13	22	Ø5
720/4X	76-136	(720-A)/2	110	45.5	118	4	50	Ø5	6	Ø13	26	Ø5
780/4X	76-136	(780-A)/2	110	45.5	118	4	56	Ø5	6	Ø13	28	Ø5
840/4X	76-136	(840-A)/2	110	45.5	118	4	62	Ø5	6	Ø13	32	Ø5
900/4X	76-136	(900-A)/2	110	45.5	118	4	68	Ø5	6	Ø13	38	Ø5
960/4X	76-136	(960-A)/2	110	45.5	118	4	74	Ø5	6	Ø13	38	Ø5
1020/4X	76-136	(1020-A)/2	110	45.5	118	4	80	Ø5	6	Ø13	40	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Parameters have to be used with equation in Annex C.

k_{H,1} for Joist Hanger GSI/2.5X and GSI/4X - Full nailing - F1

See GSE Joist hanger

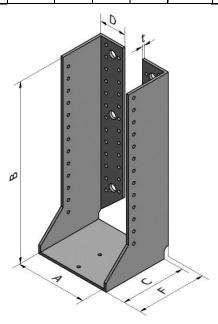
$k_{\text{H,1}}$ for Joist Hanger GSI/2.5X and GSI/4X - Partial nailing - F1

See GSE Joist hanger

$k_{\text{H,2}}$ for GSI - Full or partial nailing - F2

See GSE Joist hanger

GSI fire resistance R30 to EN 13501-2


See GSE Joist hanger

D22 GSI-AL Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GSI-AL	Steel ref 1 - Steel ref 2	-

Dimensions

		Dimono	ione In	.m1					H	loles			
Blank		Dimens	ions [n	ons [mm]				Header				Joist	
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size	
500/4X-AL	137-200	(500-A)/2	110	45.5	118	4	22	Ø5	2	Ø13	12	Ø5	
540/4X-AL	137-200	(540-A)/2	110	45.5	118	4	26	Ø5	4	Ø13	14	Ø5	
600/4X-AL	137-200	(600-A)/2	110	45.5	118	4	32	Ø5	4	Ø13	18	Ø5	
660/4X-AL	137-200	(660-A)/2	110	45.5	118	4	38	Ø5	4	Ø13	20	Ø5	
720/4X-AL	137-200	(720-A)/2	110	45.5	118	4	44	Ø5	6	Ø13	24	Ø5	
780/4X-AL	137-200	(780-A)/2	110	45.5	118	4	50	Ø5	6	Ø13	26	Ø5	
840/4X-AL	137-200	(840-A)/2	110	45.5	118	4	56	Ø5	6	Ø13	30	Ø5	
900/4X-AL	137-200	(900-A)/2	110	45.5	118	4	62	Ø5	6	Ø13	32	Ø5	
960/4X-AL	137-200	(960-A)/2	110	45.5	118	4	66	Ø5	6	Ø13	34	Ø5	
1020/4X-AL	137-200	(1020-A)/2	110	45.5	118	4	74	Ø5	6	Ø13	38	Ø5	
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-	

Page 162 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07 Parameters have to be used with equation in $\underline{\mathsf{Annex}\ \mathsf{C}}$.

$k_{\text{H,1}}$ for Joist Hanger GSI-AL - Full nailing - F1

See GSE-AL Joist hanger

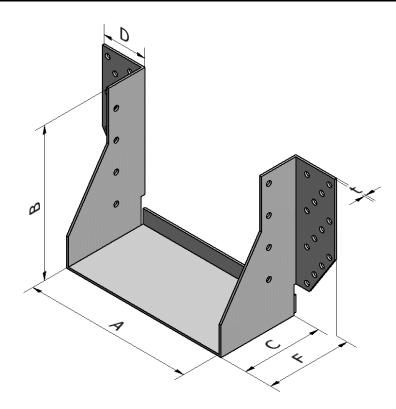
$k_{\text{H,1}}$ for Joist Hanger GSI-AL - Partial nailing - F1

See GSE-AL Joist hanger

$k_{\text{H},2}$ for GSI-AL - Full or partial nailing - F2

See GSE-AL Joist hanger

GSI-AL fire resistance R30 to EN 13501-2


See GSE-AL Joist hanger

D23 HGUQ Joist hanger

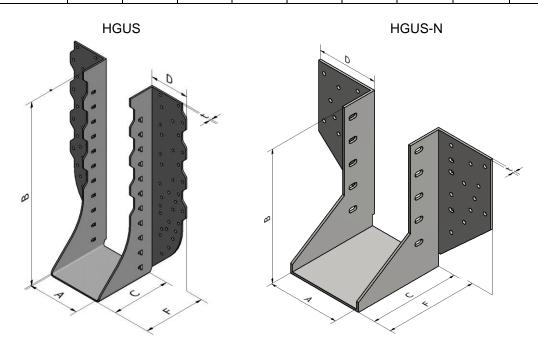
Product Name	Material reference acc. to clause II-1	Alternative Names
HGUQ SCR	Steel ref 1 - Steel ref 2	-

Dimensions

Blank			Dimension	Holes						
			Dillielisi	נווווון פווכ			Hea	der	Jo	ist
	Α	В	С	D	F	t	Qty	Size	Qty	Size
HGUQ SCR	105-202	180	100	54.5	102.5	2.5	26	Ø6.4	8	Ø6.4
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-

Characteristic capacity for HGUQ SCR - F1 and F2 - timber to timber

Model	Fasteners - SDS 6.35x89	Fasteners - SDS 6.35x63	Characteristic capacity [kh TR26 / C27			
	n _H	nJ	R _{1,k}	R _{2,k}		
HGUQ SCR	26	8	45.5	20.7		


^{*} F_k determined according to BS 5268-2:2002

D24 HGUS Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
HGUS	Steel ref 1 - Steel ref 2	-

Dimensions

			Dimensi	ana [mm]				Но	les	
Blank			Dimensio	ons [mm]			Hea	der	Joist	
	Α	В	С	D	F	t	Qty	Size	Qty	Size
HGUS48	92	180	100	66	106.5	2.5	36	Ø5	10	Ø5
HGUS410	92	229	100	66	106.5	2.5	46	Ø5	16	Ø5
HGUS412	92	265	100	66	106.5	2.5	56	Ø5	20	Ø5
HGUS414	92	316	100	66	106.5	2.5	66	Ø5	22	Ø5
HGUS180/135	135	180	100	66	106.5	2.5	36	Ø5	10	Ø5
HGUS5.50/10	140	227	100	66	106.5	2.5	46	Ø5	16	Ø5
HGUS5.50/12	140	265	100	66	106.5	2.5	56	Ø5	20	Ø5
HGUS5.50/14	140	316	100	66	106.5	2.5	66	Ø5	22	Ø5
HGUS7.25/10	184	219	100	66	106.5	2.5	46	Ø5	16	Ø5
HGUS7.25/12	184	270	100	66	106.5	2.5	56	Ø5	20	Ø5
HGUS7.25/14	184	320	100	66	106.5	2.5	66	Ø5	22	Ø5
HGUS125/80	80	122	100	66	106.5	2.5	8	Ø5	16	Ø5
HGUS145/80	80	145	100	66	106.5	2.5	10	Ø5	22	Ø5
HGUS125/105	105	110	100	66	106.5	2.5	8	Ø5	16	Ø5
HGUS145/105	105	145	100	66	106.5	2.5	10	Ø5	22	Ø5
HGUS145/120	120	145	100	66	106.5	2.5	10	Ø5	22	Ø5
HGUS145/155	155	145	100	66	106.5	2.5	10	Ø5	22	Ø5
Spec HGUS48	90-300	180	100	66	106.5	2.5	36	Ø5	10	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-

Parameters have to be used with equation in Annex C.

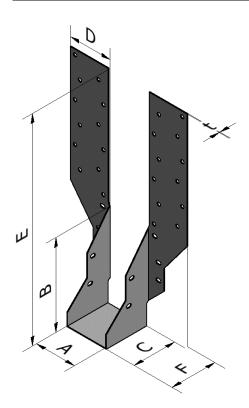
k_{H,1} for Joist Hanger HGUS - Full nailing - F1

Model	n _H	nJ	k _{H,1}
HGUS 48	36	10	25.1
HGUS 410	46	16	31.9
HGUS 412	56	20	41.4
HGUS 414	66	22	54.5
HGUS 180/35	36	10	24.8
HGUS 5.5/10	46	16	32.2
HGUS 5.5/12	56	20	41.7
HGUS 5.5/14	66	22	54.9
HGUS 7.25/10	46	16	33.3
HGUS 7.25/12	56	20	43.2
HGUS 7.25/14	66	11	54.7

k_{H,2} for HGUS - Full or partial nailing - F2

Blank	Total number of nails in the header	k _{H2}
	Full nailing	Full nailing
HGUS 48	36	53.35
HGUS 410	46	95.93
HGUS 412	56	145.59
HGUS 414	66	206.72
HGUS 180/35	36	47.7
HGUS 5.5/10	46	94.39
HGUS 5.5/12	56	145.59
HGUS 5.5/14	66	227.17
HGUS 7.25/10	46	96.1
HGUS 7.25/12	56	145.59
HGUS 7.25/14	66	206.72

Fk for Spec HGUS - F1


Model	A	В	Type of Fastener	Characteristic capacity R _{1,k}
Spec HGUS48	90-184	180	4.0x100	as HGUS48
Spec HGUS48	185-200	180	Smooth	49
Spec HGUS48	pec HGUS48 201-246 180		Shank	46.5
Spec HGUS48	247-300	180	Nails	43.7

D25 JHA270 Straps hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
JHA270	Steel ref 1 - Steel ref 2	-

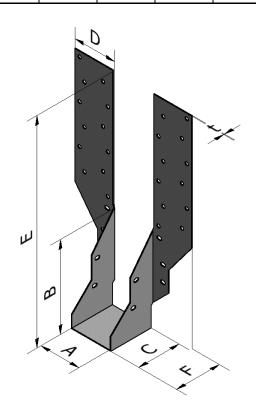
Dimensions

			Dim	onoiono [m. m. 1				Но	les	
Blank			Ullil	ensions [mmj			Hea	der	Joist	
	Α	В	С	D	E	F	t	Qty	Size	Qty	Size
JHA270/38	38	106	50	48.8	241	52.1	0.9	22	Ø4.1	4	Ø4x6
JHA270/44	44	103	50	48.8	238	52.1	0.9	22	Ø4.1	4	Ø4x6
JHA270/47	47	101.5	50	48.8	236.5	52.1	0.9	24	Ø4.1	4	Ø4x6
JHA270/50	50	100	50	48.8	235	52.1	0.9	24	Ø4.1	4	Ø4x6
JHA270/63	63	113.5	50	48.8	248.5	52.1	0.9	22	Ø4.1	4	Ø4x6
JHA270/75	75	107.5	50	48.8	242.5	52.1	0.9	22	Ø4.1	4	Ø4x6
JHA270/91	91	99.5	50	48.8	234	52.1	0.9	22	Ø4.1	4	Ø4x6
JHA270/100	100	95	50	48.8	230	52.1	0.9	22	Ø4.1	4	Ø4x6
Permitted deviation	-	-	±1.0	±1.0		±1.0	-	-	-	-	-

Parameters have to be used with equation in Annex C.

Parameters for JHA270 - F1 - timber to timber

- aramotoro			tiiiiboi to							
Model	ı	l _{ef}	S	B _{eff}	a-0.5a _c	е	Chor	kef	d	neff (per flange) round wire
JHA270/38	47	96	28.5	80	112	28	10	1.2	1.1	5
JHA270/44	47	99	28.5	80	112	28	10	1.2	1.1	5
JHA270/47	47	100.5	28.5	80	112	28	10	1.2	1.1	5
JHA270/50	47	102	28.5	80	112	28	10	1.2	1.1	5
JHA270/63	47	107	28.5	76.75	112	28	10	1.2	1.1	5
JHA270/75	47	107	28.5	73.75	112	28	10	1.2	1.1	5
JHA270/91	47	107	28.5	69.75	112	28	10	1.2	1.1	5
JHA270/100	47	107	28.5	67.5	112	28	10	1.2	1.1	5


			rting Timber steners	Supported Timber Fasteners		
Hanger	Installation	3.75	5 x 30 ST	× 30	× 75	
Туре	Configuration	Тор	Face	ST 3.75	SS 3.75	
	Face Fix	-	20	4	-	
1114070	Wrap Over	4	8	4	-	
JHA270	Face Fix	-	20	-	4	
	Wrap Over	4	8	-	4	

D26 JHA450 Straps hanger

Product Name Material reference acc. to clause II-1		Alternative Names
JHA270	Steel ref 1 - Steel ref 2	-

Dimensions

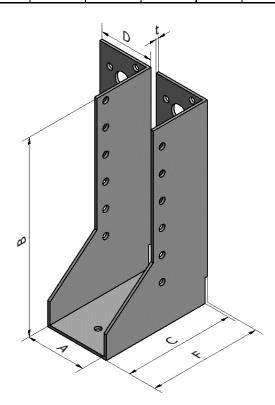
			Dim	onoiono [m. m. 1				Н	oles	
Blank			יוווט	ensions [Header		Joist	
	Α	В	С	D	E	F	t	Qty	Size	Qty	Size
JHA450/38	38	191	50	51.5	481	61.5	1.5	38	Ø4	4	Ø4x6
JHA450/44	44	188	50	51.5	478	61.5	1.5	38	Ø4	4	Ø4x6
JHA450/47	47	187	50	51.5	477	61.5	1.5	38	Ø4	4	Ø4x6
JHA450/50	50	185	50	51.5	475	61.5	1.5	38	Ø4	4	Ø4x6
JHA450/63	63	179	50	51.5	469	61.5	1.5	38	Ø4	4	Ø4x6
JHA450/75	75	173	50	51.5	463	61.5	1.5	38	Ø4	4	Ø4x6
JHA450/91	91	165	50	51.5	455	61.5	1.5	38	Ø4	4	Ø4x6
JHA450/100	100	160	50	51.5	450	61.5	1.5	38	Ø4	4	Ø4x6
JHA450/125	125	162.5	63	51.5	452.5	64.5	1.5	38	Ø4	6	Ø4x6
JHA450/137	137	156.5	63	51.5	446.5	64.5	1.5	38	Ø4	6	Ø4x6
JHA450/150	150	150	63	51.5	440	64.5	1.5	38	Ø4	6	Ø4x6
Permitted deviation	-	-	±1.0	±1.0	±1.0	±1.0	-	-	-	-	-

Parameters have to be used with equation in Annex C.

Parameters for JHA450 - F1 - timber to timber

Model	I	l _{ef}	S	B _{eff}	a-0.5a _c	е	C _{hor}	kef	d	neff (per flange) round wire
JHA450/38	50	99	35	80	174	36.5	10	1.1	1.1	6
JHA450/44	50	102	35	80	174	36.5	10	1.1	1.1	6
JHA450/47	50	104	35	80	174	36.5	10	1.1	1.1	6
JHA450/50	50	105	35	80	174	36.5	10	1.1	1.1	6
JHA450/63	50	110	35	77	174	36.5	10	1.1	1.1	6
JHA450/75	50	110	35	74	174	36.5	10	1.1	1.1	6
JHA450/91	50	110	35	70	174	36.5	10	1.1	1.1	6
JHA450/100	50	110	35	68	174	36.5	10	1.1	1.1	6
JHA450/125	63	123	44	69	164	31.5	10	1.1	1.1	6
JHA450/137	63	123	44	66	164	31.5	10	1.1	1.1	6
JHA450/150	63	123	44	62	164	31.5	10	1.1	1.1	6

			ng Timber eners	Supported Timber Fasteners		
Hanger Type	Installation	ST 3.7	75 x 30	× 30	× 75	
······ge····ype	Configuration	Тор	Face	ST 3.75 x	SS 3.75	
	Face Fix	-	20	6	-	
	Wrap Over	4	8	6	-	
ILIA 450	Face Fix	1	20	-	6	
JHA450	Wrap Over	4	8	-	6	
	Face Fix*	-	20	6	-	
	Wrap Over*	4	4	6	-	

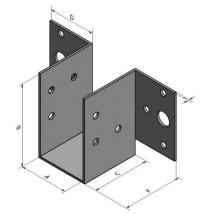

^{*}Under slung installation where the joist sits lower than the header

D27 JHR/L Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
JHR	Steel ref 1 - Steel ref 2	-
JHL	Steel ref 1 - Steel ref 2	-

Dimensions

			Dimonoid	ana Immī	ı	Holes								
Blank	Dimensions [mm]							Header Joist						
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size		
JHR34462	46	147	84	41.5	86	2	22	Ø5	4	Ø13	12	Ø5		
JHL34462	46	147	84	41.5	86	2	22	Ø5	4	Ø13	12	Ø5		
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-		



Characteristic capacity for JHR-L - Full nailing - F1 - timber to timber

<u> </u>	 	torty for crist		an naming in think	, , , , , , , , , , , , , , , , , , , 	tillibei		
			Characteristic capacity					
Model	Model Header Joist						FLAUL CO.	
iviouei	Rig	id Support		Timber		JOIST		
	n _H	Туре	n _H	Туре	n,	Туре	R _{1,k}	R _{2,k}
JHR34462	4	Ø12	22	CNA4.0x50	12	CNA4.0x35	17.8	9.7
JHL34462	4	Ø12	22	CNA4.0x50	12	CNA4.0x35	17.8	9.7

D28 MF Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
MF	Steel ref 1 - Steel ref 2	-

Dimensions

	Dimensions [mm]							Holes					
Blank		Dimensions [min]							Header				
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size	
165	32-60	(165-A)/2	45	36.5	46.5	1.5	6	Ø5	2	Ø11	6	Ø5	
180	32-60	(180-A)/2	45	36.5	46.5	1.5	6	Ø5	2	Ø11	6	Ø5	
200	32-60	(200-A)/2	45	36.5	46.5	1.5	8	Ø5	2	Ø11	6	Ø5	
Permitte d deviation	ı	-	±1.0	±1.0	±1.0	-	ı	-	ı	-	ı	-	

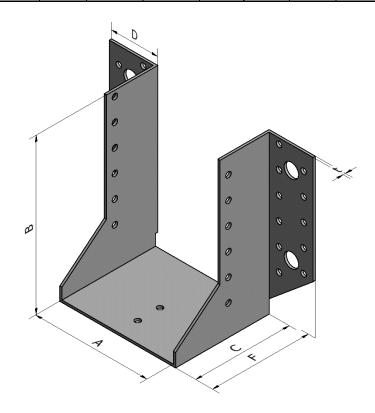
Parameters have to be used with equation in Annex C.

 $k_{\text{H,1}}$ for Joist Hanger MF - Full nailing - F1

		165		180	200		
	n _H n _J		n _H n _J		nн	nл	
	6	6	6	6	8	6	
Α	B kH,1		В	kH,1	В	kH,1	
38	64	10.3	71	10.3	81	15.4	
50	58	8.5	65	8.5	75	13.2	
60	53	7.1	60	7.1	70	11.4	

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

 $k_{\text{H},2}$ for MF - Full or partial nailing - F2


Blank	Total number of nails in the header	k _{H2}
	Full nailing	Full nailing
165	6	8.7
180	6	8.7
230	8	13.9

D29 SAE Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SAE	Steel ref 1 - Steel ref 2	-

Dimensions

		Di	manaia	ns [mm]					H	loles		
Blank		ווט	nensioi	ns (mm)				Hea		Joist		
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
200	24-80	(200-A)/2	84	41.5	86	2	8	Ø5	2	Ø11	5	Ø5
250	24-80	(250-A)/2	84	41.5	86	2	12	Ø5	2	Ø11	7	Ø5
300	24-70	(300-A)/2	84	41.5	86	2	18	Ø5	4	Ø13	10	Ø5
340	24-70	(340-A)/2	84	41.5	86	2	22	Ø5	4	Ø13	12	Ø5
380	24-110	(380-A)/2	84	41.5	86	2	22	Ø5	4	Ø13	12	Ø5
440	24-110	(440-A)/2	84	41.5	86	2	28	Ø5	4	Ø13	15	Ø5
500	24-110	(500-A)/2	84	41.5	86	2	34	Ø5	6	Ø13	18	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Page 173 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

Parameters have to be used with equation in Annex C.

k_{H,1} for Joist Hanger SAE - Full nailing - F1

Part	k _{H,1} for	k _{H,1} for Joist Hanger SAE - Full nailing - F1													
8 5 12 7 18 10 22 12 22 12 28 15 34 18 A B kst.1 133 30.5 153 40.5 173 51.2 203 71.0 233 93.8 36 82 11.1 10.9 106 17.4 131 29.6 151 39.4 171 50.7 202 60.7 231 92.3 93.9 14.2 14.0 14.0 16.8 12.2 21.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0		2	200	2	50	3	00	3	40	3	80	4	40	5	00
A B		nн		nн	nJ	n _H	nJ	n _H	nJ	nн	nJ	n _H	nJ	n _H	nJ
32 84 11.6 109 18.4 134 31.0 154 41.0 174 51.8 204 71.7 234 94.6 34 83 11.4 108 18.1 133 30.5 153 40.5 173 51.2 203 71.0 233 93.8 36 82 11.1 107 17.7 132 30.1 152 40.0 172 50.7 202 70.3 232 93.0 38 81 10.9 106 17.4 131 29.6 151 39.4 171 50.1 201 69.7 231 92.3 40 80 10.6 105 17.1 130 29.2 150 38.9 170 49.6 200 69.0 230 91.5 42 79 10.4 104 16.8 129 28.7 149 38.4 169 49.0 199 68.3 229 90.7 44 78 10.2 103 16.4 128 28.3 148 37.9 168 48.5 198 67.7 228 89.9 46 77 9.9 102 16.1 127 27.9 147 37.4 167 47.9 197 67.0 227 89.2 48 76 9.7 101 15.8 126 27.4 146 36.9 166 47.4 196 66.4 226 88.4 50 75 9.4 100 15.5 125 27.0 145 36.4 165 46.9 195 65.7 222 87.7 52 74 9.2 99 15.1 124 26.6 144 35.9 164 46.3 194 65.1 224 86.5 54 73 9.0 98 14.8 123 26.1 143 35.4 163 45.8 193 64.4 223 86.1 56 72 8.7 97 14.5 122 25.7 142 34.9 162 45.2 192 63.8 228 85.4 58 71 8.5 96 14.2 121 25.3 141 34.4 161 44.7 191 63.1 221 84.6 60 70 8.3 95 13.9 120 24.8 140 33.9 160 44.2 190 62.5 220 83.9 62 69 8.0 94 13.6 119 24.4 139 33.4 159 43.6 189 61.8 219 83.1 68 66 67 7.6 92 13.0 117 23.6 137 32.4 155 41.5 186 59.3 216 80.9 70 65 7.1 90 12.3 115 22.8 135 31.4 155 41.5 185 59.3 216 80.9 70 65 7.1 90 12.3 115 22.8 135 31.4 155 41.5 185 59.3 216 80.9 70 65 7.1 90 12.3 115 22.8 135 31.4 155 41.5 185 59.3 216 80.9 70 65 7.1 90 12.3 115 22.8 135 31.4 155 41.5 186 59.9 216 80.9 70 60 60 60 60 60		8	5	12	7	18	10	22	12	22	12	28	15	34	18
34 83 11.4 108 18.1 133 30.5 153 40.5 173 51.2 203 71.0 233 93.8 36 82 11.1 107 17.7 132 30.1 152 40.0 172 50.7 202 70.3 232 93.0 38 81 10.9 106 17.4 131 29.6 151 39.4 171 50.1 201 69.7 231 92.3 40 80 10.6 105 17.1 130 29.2 150 38.9 170 49.6 200 69.0 230 91.5 42 79 10.4 104 16.8 129 28.7 149 38.4 169 49.0 199 68.3 229 90.7 44 78 10.2 103 16.4 128 28.3 148 37.9 168 48.5 198 67.7 222 89.2 48 76 9.7 101 15.8 126 27.4 146 36.9 166 47.4 196 66.4 226 88.4 50 75 9.4 100 15.5 125 27.0 145 36.4 165 46.9 195 65.7 225 87.7 52 74 9.2 99 15.1 124 26.6 144 35.9 164 46.3 194 65.1 224 86.9 54 73 9.0 98 14.8 123 26.1 143 35.4 163 45.8 193 64.4 223 86.1 56 72 8.7 97 14.5 122 25.7 142 34.9 162 45.2 192 63.8 222 85.4 58 71 8.5 96 14.2 121 25.3 141 34.4 161 44.7 191 63.1 221 84.6 60 70 8.3 95 13.9 120 24.8 140 33.9 160 44.2 190 62.5 220 83.9 62 69 8.0 94 13.6 119 24.4 139 33.4 159 43.6 189 61.8 219 83.1 64 68 7.3 91 12.7 116 23.2 136 31.9 156 42.1 186 59.9 216 80.9 70 65 7.1 90 12.3 115 22.8 135 31.4 155 41.5 185 59.3 215 80.1 72 64 69 89 12.0 150 38.9 170 50.0 200 69.2 80 60 60 68 61 12.2 144 35.9 176 53.6 206 73.5 90	Α	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k _{H,1}	В	k H,1
36 82 11.1 107 17.7 132 30.1 152 40.0 172 50.7 202 70.3 232 93.0 38 81 10.9 106 17.4 131 29.6 151 39.4 171 50.1 201 69.7 231 92.3 40 80 10.6 105 17.1 130 29.2 150 38.9 170 49.6 200 69.0 231 92.3 42 79 10.4 104 16.8 129 28.7 149 38.4 169 49.0 199 68.3 229 90.7 44 78 10.2 103 16.4 128 28.3 148 37.9 168 48.5 198 67.7 228 89.9 46 77 9.9 102 16.1 127 27.9 147 37.4 167 47.9 197 67.0 227 89.2 48 76 9.7 101 15.8 126 27.4 146 36.9 166 47.4 196 66.4 226 88.4 50 75 9.4 100 15.5 125 27.0 145 36.4 165 46.9 195 65.7 225 87.7 52 74 9.2 99 15.1 124 26.6 144 35.9 164 46.3 194 65.1 224 86.9 54 73 9.0 98 14.8 123 26.1 143 35.4 163 45.8 193 64.4 223 86.1 56 72 8.7 97 14.5 122 25.7 142 34.9 162 45.2 192 63.8 223 85.4 50 70 8.3 95 13.9 120 24.8 140 33.9 160 44.2 190 62.5 220 83.9 62 69 8.0 94 13.6 119 24.4 139 33.4 159 43.6 189 618 219 83.1 64 68 7.8 93 13.3 118 24.0 138 32.9 158 43.1 188 61.2 218 82.4 66 67 7.6 92 13.0 117 23.6 137 32.4 157 42.6 187 60.6 217 81.6 68 66 7.3 91 12.7 116 23.2 136 31.9 156 42.1 186 59.9 215 80.1 70 65 7.1 90 12.3 115 22.8 135 31.4 155 41.0 184 58.6 214 79.4 74 63 67 88 11.7 153 40.0 182 57.4 212 77.9 78 61 6.2 66 11.2 - 153 40.5 83.9 180 56.1 210 76.4 84 144 35.9 176 53.6 206 73.5 90 146 36.9 176 53.6 206 73.5 90 144 35.9 170 50.0 200 69.2 100 144 35.9 170 50.0	32	84	11.6	109	18.4	134	31.0	154	41.0	174	51.8	204	71.7	234	94.6
38	34	83	11.4	108	18.1	133	30.5	153	40.5	173	51.2	203	71.0	233	93.8
40	36	82	11.1	107	17.7	132	30.1	152	40.0	172	50.7	202	70.3	232	93.0
42 79 10.4 104 16.8 129 28.7 149 38.4 169 49.0 199 68.3 229 90.7 44 78 10.2 103 16.4 128 28.3 148 37.9 168 48.5 198 67.7 228 89.9 46 77 9.9 102 16.1 127 27.9 147 37.4 167 47.9 197 67.0 228 89.2 48 76 9.7 101 15.8 126 27.4 146 36.9 166 47.4 196 66.4 226 88.4 50 75 9.4 100 15.5 125 27.0 145 36.4 165 46.9 195 65.7 225 87.7 52 74 9.2 99 15.1 124 26.6 144 35.9 164 46.3 193 63.2 22 86.1	38	81	10.9	106	17.4	131	29.6	151	39.4	171	50.1	201	69.7	231	92.3
44 78 10.2 103 16.4 128 28.3 148 37.9 168 48.5 198 67.7 228 89.9 46 77 9.9 102 16.1 127 27.9 147 37.4 167 47.9 197 67.0 227 89.2 48 76 9.7 101 15.8 126 27.4 146 36.9 166 47.4 196 66.2 225 85.7 50 75 9.4 100 15.5 125 27.0 145 36.4 166 46.9 195 65.7 225 85.7 52 74 9.2 99 15.1 124 26.6 144 35.9 164 46.3 194 65.1 224 86.9 54 73 9.0 98 14.8 122 25.7 142 34.9 162 45.2 192 63.8 222 86.1	40	80	10.6	105	17.1	130	29.2	150	38.9	170	49.6	200	69.0	230	91.5
46 77 9.9 102 16.1 127 27.9 147 37.4 167 47.9 197 67.0 227 89.2 48 76 9.7 101 15.8 126 27.4 146 36.9 166 47.4 196 66.4 226 88.4 50 75 9.4 100 15.5 125 27.0 145 36.4 165 46.9 195 66.7 225 87.7 52 74 9.2 99 15.1 124 26.6 144 35.9 164 46.3 194 65.1 224 86.9 54 73 9.0 98 14.8 123 26.1 143 35.4 163 45.8 193 64.4 223 86.1 56 72 8.7 97 14.5 122 25.7 142 34.9 162 45.2 192 63.8 222 85.4 <t< td=""><td>42</td><td>79</td><td>10.4</td><td>104</td><td>16.8</td><td>129</td><td>28.7</td><td>149</td><td>38.4</td><td>169</td><td>49.0</td><td>199</td><td>68.3</td><td>229</td><td>90.7</td></t<>	42	79	10.4	104	16.8	129	28.7	149	38.4	169	49.0	199	68.3	229	90.7
48 76 9.7 101 15.8 126 27.4 146 36.9 166 47.4 196 66.4 226 88.4 50 75 9.4 100 15.5 125 27.0 145 36.4 165 46.9 195 65.7 225 87.7 52 74 9.2 99 15.1 124 26.6 144 35.9 164 46.3 194 65.1 224 86.9 54 73 9.0 98 14.8 123 26.1 143 35.4 163 45.8 193 66.4 224 86.1 56 72 8.7 97 14.5 122 25.7 142 34.9 162 45.2 192 63.8 222 85.4 58 71 8.5 96 14.2 121 25.3 141 34.4 161 44.7 191 63.8 222 85.4 <td< td=""><td>44</td><td>78</td><td>10.2</td><td>103</td><td>16.4</td><td>128</td><td>28.3</td><td>148</td><td>37.9</td><td>168</td><td>48.5</td><td>198</td><td>67.7</td><td>228</td><td>89.9</td></td<>	44	78	10.2	103	16.4	128	28.3	148	37.9	168	48.5	198	67.7	228	89.9
50 75 9.4 100 15.5 125 27.0 145 36.4 165 46.9 195 65.7 225 87.7 52 74 9.2 99 15.1 124 26.6 144 35.9 164 46.3 194 65.1 224 86.9 56 72 8.7 97 14.5 122 25.7 142 34.9 162 45.2 192 63.8 222 85.4 58 71 8.5 96 14.2 121 25.3 141 34.4 161 44.7 191 63.1 221 84.6 60 70 8.3 95 13.9 120 24.8 140 33.9 160 44.2 190 62.5 220 83.9 62 69 8.0 94 13.6 119 24.4 139 33.4 159 43.6 189 61.8 219 83.1	46	77	9.9	102	16.1	127	27.9	147	37.4	167	47.9	197	67.0	227	89.2
52 74 9.2 99 15.1 124 26.6 144 35.9 164 46.3 194 65.1 224 86.9 54 73 9.0 98 14.8 123 26.1 143 35.4 163 45.8 193 64.4 223 86.1 58 71 8.5 96 14.2 121 25.3 141 34.4 161 44.7 191 63.1 221 84.6 60 70 8.3 95 13.9 120 24.8 140 33.9 160 44.2 190 62.5 220 33.9 62 69 8.0 94 13.6 119 24.4 139 33.4 159 43.6 189 61.8 219 83.1 64 68 7.8 93 13.3 118 24.0 138 32.9 158 43.1 188 61.2 218 82.4 6	48	76	9.7	101	15.8	126	27.4	146	36.9	166	47.4	196	66.4	226	88.4
54 73 9.0 98 14.8 123 26.1 143 35.4 163 45.8 193 64.4 223 86.1 56 72 8.7 97 14.5 122 25.7 142 34.9 162 45.2 192 63.8 222 85.4 58 71 8.5 96 14.2 121 25.3 141 34.4 161 44.7 191 63.1 221 84.6 60 70 8.3 95 13.9 120 24.8 140 33.9 160 44.2 190 62.5 220 83.9 62 69 8.0 94 13.6 119 24.4 139 33.4 159 43.6 189 61.8 219 83.1 64 68 7.6 72 13.0 117 23.6 137 32.4 157 42.6 187 60.6 217 81.6 6	50	75	9.4	100	15.5	125	27.0	145	36.4	165	46.9	195	65.7	225	87.7
56 72 8.7 97 14.5 122 25.7 142 34.9 162 45.2 192 63.8 222 85.4 58 71 8.5 96 14.2 121 25.3 141 34.4 161 44.7 191 63.1 221 84.6 60 70 8.3 95 13.9 120 24.8 140 33.9 160 44.2 190 62.5 220 83.9 62 69 8.0 94 13.6 119 24.4 139 33.4 159 43.6 189 61.8 219 83.1 64 68 7.8 93 13.3 118 24.0 138 32.9 158 43.1 188 61.2 218 82.4 66 67 7.6 92 13.0 117 23.6 137 32.4 157 60.6 16.2 18.0 89.9 12.0 - <td< td=""><td>52</td><td>74</td><td>9.2</td><td>99</td><td>15.1</td><td>124</td><td>26.6</td><td>144</td><td>35.9</td><td>164</td><td>46.3</td><td>194</td><td>65.1</td><td>224</td><td>86.9</td></td<>	52	74	9.2	99	15.1	124	26.6	144	35.9	164	46.3	194	65.1	224	86.9
58 71 8.5 96 14.2 121 25.3 141 34.4 161 44.7 191 63.1 221 84.6 60 70 8.3 95 13.9 120 24.8 140 33.9 160 44.2 190 62.5 220 83.9 62 69 8.0 94 13.6 119 24.4 139 33.4 159 43.6 189 61.8 219 83.1 64 68 7.8 93 13.3 118 24.0 138 32.9 158 43.1 188 61.2 218 82.4 66 66 67 7.6 92 13.0 117 23.6 137 32.4 157 42.6 187 60.6 217 81.6 68 67 7.3 91 12.7 116 23.2 135 31.4 155 41.5 185 59.3 215 80.1	54	73	9.0	98	14.8	123	26.1	143	35.4	163	45.8	193	64.4	223	86.1
60 70 8.3 95 13.9 120 24.8 140 33.9 160 44.2 190 62.5 220 83.9 62 69 8.0 94 13.6 119 24.4 139 33.4 159 43.6 189 61.8 219 83.1 64 68 7.8 93 13.3 118 24.0 138 32.9 158 43.1 188 61.2 218 82.4 66 67 7.6 92 13.0 117 23.6 137 32.4 157 42.6 187 60.6 217 81.6 68 66 7.3 91 12.7 116 23.2 136 31.9 156 42.1 186 59.9 216 80.9 70 65 7.1 90 12.3 115 22.8 135 31.4 155 41.5 185 59.9 215 80.1 7	56	72	8.7	97	14.5	122	25.7	142	34.9	162	45.2	192	63.8	222	85.4
62 69 8.0 94 13.6 119 24.4 139 33.4 159 43.6 189 61.8 219 83.1 64 68 7.8 93 13.3 118 24.0 138 32.9 158 43.1 188 61.2 218 82.4 66 67 7.6 92 13.0 117 23.6 137 32.4 157 42.6 187 60.6 217 81.6 68 66 7.3 91 12.7 116 23.2 136 31.9 156 42.1 186 59.9 216 80.9 70 65 7.1 90 12.3 115 22.8 135 31.4 155 41.5 185 59.9 216 80.9 70 65 7.1 90 12.3 11.5 22.8 135 31.4 155 41.5 185 59.3 215 80.1	58	71	8.5	96	14.2	121	25.3	141	34.4	161	44.7	191	63.1	221	84.6
64 68 7.8 93 13.3 118 24.0 138 32.9 158 43.1 188 61.2 218 82.4 66 67 7.6 92 13.0 117 23.6 137 32.4 157 42.6 187 60.6 217 81.6 68 66 7.3 91 12.7 116 23.2 136 31.9 156 42.1 186 59.9 216 80.9 70 65 7.1 90 12.3 115 22.8 135 31.4 155 41.5 185 59.3 215 80.1 72 64 6.9 89 12.0 - - - 153 40.5 183 58.0 213 78.6 76 62 6.4 87 11.4 - - - 151 39.4 181 56.8 211 77.2 80 60 6.0 <t< td=""><td>60</td><td>70</td><td>8.3</td><td>95</td><td>13.9</td><td>120</td><td>24.8</td><td>140</td><td>33.9</td><td>160</td><td>44.2</td><td>190</td><td>62.5</td><td>220</td><td>83.9</td></t<>	60	70	8.3	95	13.9	120	24.8	140	33.9	160	44.2	190	62.5	220	83.9
66 67 7.6 92 13.0 117 23.6 137 32.4 157 42.6 187 60.6 217 81.6 68 66 7.3 91 12.7 116 23.2 136 31.9 156 42.1 186 59.9 216 80.9 70 65 7.1 90 12.3 115 22.8 135 31.4 155 41.5 185 59.3 215 80.1 72 64 6.9 89 12.0 - - - 154 41.0 184 58.6 214 79.4 74 63 6.7 88 11.7 - - - 153 40.5 183 58.0 213 78.6 76 62 6.4 87 11.4 - - - 152 40.0 182 57.4 212 77.9 78 61 6.2 86 11.2 <td>62</td> <td>69</td> <td>8.0</td> <td>94</td> <td>13.6</td> <td>119</td> <td>24.4</td> <td>139</td> <td>33.4</td> <td>159</td> <td>43.6</td> <td>189</td> <td>61.8</td> <td>219</td> <td>83.1</td>	62	69	8.0	94	13.6	119	24.4	139	33.4	159	43.6	189	61.8	219	83.1
68 66 7.3 91 12.7 116 23.2 136 31.9 156 42.1 186 59.9 216 80.9 70 65 7.1 90 12.3 115 22.8 135 31.4 155 41.5 185 59.3 215 80.1 72 64 6.9 89 12.0 - - - - 154 41.0 184 58.6 214 79.4 74 63 6.7 88 11.7 - - - 153 40.5 183 58.0 213 78.6 76 62 6.4 87 11.4 - - - 152 40.0 182 57.4 212 77.9 78 61 6.2 86 11.2 - - - 150 38.9 180 56.1 210 76.4 82 - - - - -<	64	68	7.8	93	13.3	118	24.0	138	32.9	158	43.1	188	61.2	218	82.4
70 65 7.1 90 12.3 115 22.8 135 31.4 155 41.5 185 59.3 215 80.1 72 64 6.9 89 12.0 - - - - 154 41.0 184 58.6 214 79.4 74 63 6.7 88 11.7 - - - 153 40.5 183 58.0 213 78.6 76 62 6.4 87 11.4 - - - 152 40.0 182 57.4 212 77.9 78 61 6.2 86 11.2 - - - 150 38.9 180 56.1 210 76.4 82 - - - - - 149 38.4 179 55.5 209 75.7 84 - - - - - - 144 37.9	66	67	7.6	92	13.0	117	23.6	137	32.4	157	42.6	187	60.6	217	81.6
72 64 6.9 89 12.0 - - - 154 41.0 184 58.6 214 79.4 74 63 6.7 88 11.7 - - - 153 40.5 183 58.0 213 78.6 76 62 6.4 87 11.4 - - - 152 40.0 182 57.4 212 77.9 78 61 6.2 86 11.2 - - - 151 39.4 181 56.8 211 77.2 80 60 6.0 85 10.9 - - - 150 38.9 180 56.1 210 76.4 82 - - - - - 149 38.4 179 55.5 209 75.7 84 - - - - - 147 37.4 177 54.3 207 <t< td=""><td>68</td><td>66</td><td>7.3</td><td>91</td><td>12.7</td><td>116</td><td>23.2</td><td>136</td><td>31.9</td><td>156</td><td>42.1</td><td>186</td><td>59.9</td><td>216</td><td>80.9</td></t<>	68	66	7.3	91	12.7	116	23.2	136	31.9	156	42.1	186	59.9	216	80.9
74 63 6.7 88 11.7 - - - 153 40.5 183 58.0 213 78.6 76 62 6.4 87 11.4 - - - 152 40.0 182 57.4 212 77.9 78 61 6.2 86 11.2 - - - 151 39.4 181 56.8 211 77.2 80 60 6.0 85 10.9 - - - 150 38.9 180 56.1 210 76.4 82 - - - - - 149 38.4 179 55.5 209 75.7 84 - - - - - 148 37.9 178 54.9 208 75.0 86 - - - - - - 147 37.4 177 54.3 207 74.2	70	65	7.1	90	12.3	115	22.8	135	31.4	155	41.5	185	59.3	215	80.1
76 62 6.4 87 11.4 - - - 152 40.0 182 57.4 212 77.9 78 61 6.2 86 11.2 - - - 151 39.4 181 56.8 211 77.2 80 60 6.0 85 10.9 - - - 150 38.9 180 56.1 210 76.4 82 - - - - - 149 38.4 179 55.5 209 75.7 84 - - - - - 148 37.9 178 54.9 208 75.0 86 - - - - - 147 37.4 177 54.3 207 74.2 88 - - - - - 146 36.9 176 53.6 206 73.5 90 - -	72	64	6.9	89	12.0	-	-	-	-	154	41.0	184	58.6	214	79.4
78 61 6.2 86 11.2 - - - 151 39.4 181 56.8 211 77.2 80 60 6.0 85 10.9 - - - 150 38.9 180 56.1 210 76.4 82 - - - - - 149 38.4 179 55.5 209 75.7 84 - - - - - 148 37.9 178 54.9 208 75.0 86 - - - - - - 147 37.4 177 54.3 207 74.2 88 - - - - - - 146 36.9 176 53.6 206 73.5 90 - - - - - 145 36.4 175 53.0 205 72.8 92 - -	74	63	6.7	88	11.7	-	-	-	-	153	40.5	183	58.0	213	78.6
80 60 6.0 85 10.9 - - - 150 38.9 180 56.1 210 76.4 82 - - - - - 149 38.4 179 55.5 209 75.7 84 - - - - - 148 37.9 178 54.9 208 75.0 86 - - - - - 147 37.4 177 54.3 207 74.2 88 - - - - - 146 36.9 176 53.6 206 73.5 90 - - - - - 145 36.4 175 53.0 205 72.8 92 - - - - - - 144 35.9 174 52.4 204 72.1 94 - - - - - - </td <td>76</td> <td>62</td> <td>6.4</td> <td>87</td> <td>11.4</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>152</td> <td>40.0</td> <td>182</td> <td>57.4</td> <td>212</td> <td>77.9</td>	76	62	6.4	87	11.4	-	-	-	-	152	40.0	182	57.4	212	77.9
82 - - - - 149 38.4 179 55.5 209 75.7 84 - - - - - 148 37.9 178 54.9 208 75.0 86 - - - - - 147 37.4 177 54.3 207 74.2 88 - - - - - - 146 36.9 176 53.6 206 73.5 90 - - - - - 145 36.4 175 53.0 205 72.8 92 - - - - - 144 35.9 174 52.4 204 72.1 94 - - - - - 143 35.4 173 51.8 203 71.3 96 - - - - - 142 34.9 172 51.	78	61	6.2	86	11.2	-	-	-	-	151	39.4	181	56.8	211	77.2
84 - - - - - 148 37.9 178 54.9 208 75.0 86 - - - - - 147 37.4 177 54.3 207 74.2 88 - - - - - - 146 36.9 176 53.6 206 73.5 90 - - - - - - 145 36.4 175 53.0 205 72.8 92 - - - - - - 144 35.9 174 52.4 204 72.1 94 - - - - - - 144 35.9 174 52.4 204 72.1 94 - - - - - - 143 35.4 173 51.8 203 71.3 96 - - - - - - 142 34.9 172 51.2 202 70.6 9	80	60	6.0	85	10.9	-	-	-	-	150	38.9	180	56.1	210	76.4
86 - - - - - 147 37.4 177 54.3 207 74.2 88 - - - - - - 146 36.9 176 53.6 206 73.5 90 - - - - - - 145 36.4 175 53.0 205 72.8 92 - - - - - - 144 35.9 174 52.4 204 72.1 94 - - - - - 143 35.4 173 51.8 203 71.3 96 - - - - - - 142 34.9 172 51.2 202 70.6 98 - - - - - - 141 34.4 171 50.6 201 69.9 100 - - - - - - 140 33.9 170 50.0 200 69.2	82	-	-	-	-	-	-	-	-	149	38.4	179	55.5	209	75.7
88 - - - - - 146 36.9 176 53.6 206 73.5 90 - - - - - 145 36.4 175 53.0 205 72.8 92 - - - - - - 144 35.9 174 52.4 204 72.1 94 - - - - - - 143 35.4 173 51.8 203 71.3 96 - - - - - - 142 34.9 172 51.2 202 70.6 98 - - - - - - 141 34.4 171 50.6 201 69.9 100 - - - - - - 140 33.9 170 50.0 200 69.2 102 - - - - - - 139 33.4 169 49.4 199 68.5 <td< td=""><td>84</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>148</td><td>37.9</td><td>178</td><td>54.9</td><td>208</td><td>75.0</td></td<>	84	-	-	-	-	-	-	-	-	148	37.9	178	54.9	208	75.0
90 - - - - - - 145 36.4 175 53.0 205 72.8 92 - - - - - - 144 35.9 174 52.4 204 72.1 94 - - - - - - 143 35.4 173 51.8 203 71.3 96 - - - - - - 142 34.9 172 51.2 202 70.6 98 - - - - - - 141 34.4 171 50.6 201 69.9 100 - - - - - - 140 33.9 170 50.0 200 69.2 102 - - - - - - 139 33.4 169 49.4 199 68.5 104 - - - - - - - 138 32.9 168 48.8 198 </td <td>86</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>147</td> <td>37.4</td> <td>177</td> <td>54.3</td> <td>207</td> <td>74.2</td>	86	-	-	-	-	-	-	-	-	147	37.4	177	54.3	207	74.2
92 - - - - - 144 35.9 174 52.4 204 72.1 94 - - - - - - 143 35.4 173 51.8 203 71.3 96 - - - - - - 142 34.9 172 51.2 202 70.6 98 - - - - - - 141 34.4 171 50.6 201 69.9 100 - - - - - - 140 33.9 170 50.0 200 69.2 102 - - - - - - - 139 33.4 169 49.4 199 68.5 104 - - - - - - - 138 32.9 168 48.8 198 67.8 106 - - - - - - - - - 136 31.9	88	-	-	-	-	-	-	-	-	146	36.9	176	53.6	206	73.5
94 - - - - - 143 35.4 173 51.8 203 71.3 96 - - - - - - 142 34.9 172 51.2 202 70.6 98 - - - - - - 141 34.4 171 50.6 201 69.9 100 - - - - - - 140 33.9 170 50.0 200 69.2 102 - - - - - - 139 33.4 169 49.4 199 68.5 104 - - - - - - - 138 32.9 168 48.8 198 67.8 106 - - - - - - - 136 31.9 166 47.6 196 66.4	90	-	-	-	-	-	-	-	-	145	36.4	175	53.0	205	72.8
96 - - - - - - 142 34.9 172 51.2 202 70.6 98 - - - - - - 141 34.4 171 50.6 201 69.9 100 - - - - - - 140 33.9 170 50.0 200 69.2 102 - - - - - - 139 33.4 169 49.4 199 68.5 104 - - - - - - - 138 32.9 168 48.8 198 67.8 106 - - - - - - - 136 31.9 166 47.6 196 66.4	92	-	-	-	-	-	-		-	144	35.9	174	52.4	204	72.1
98 - - - - - 141 34.4 171 50.6 201 69.9 100 - - - - - - 140 33.9 170 50.0 200 69.2 102 - - - - - - 139 33.4 169 49.4 199 68.5 104 - - - - - - 138 32.9 168 48.8 198 67.8 106 - - - - - - - 137 32.4 167 48.2 197 67.1 108 - - - - - - - - 136 31.9 166 47.6 196 66.4	94		-	-	-	-	-	-	-	143	35.4	173	51.8	203	71.3
100 - - - - - - 140 33.9 170 50.0 200 69.2 102 - - - - - - 139 33.4 169 49.4 199 68.5 104 - - - - - - - 138 32.9 168 48.8 198 67.8 106 - - - - - - - 137 32.4 167 48.2 197 67.1 108 - - - - - - - - 136 31.9 166 47.6 196 66.4	96	-	-	-	-	-	-	-	-	142	34.9	172	51.2	202	70.6
102 - - - - - 139 33.4 169 49.4 199 68.5 104 - - - - - - 138 32.9 168 48.8 198 67.8 106 - - - - - - 137 32.4 167 48.2 197 67.1 108 - - - - - - - 136 31.9 166 47.6 196 66.4	98		-	-	-	-	-	-	-	141	34.4	171	50.6	201	69.9
104 - - - - - 138 32.9 168 48.8 198 67.8 106 - - - - - - 137 32.4 167 48.2 197 67.1 108 - - - - - - - 136 31.9 166 47.6 196 66.4	100		-	-	-	-	-	_	-	140	33.9	170	50.0	200	69.2
106 - - - - - 137 32.4 167 48.2 197 67.1 108 - - - - - - 136 31.9 166 47.6 196 66.4	102	_	-	-	-	-	-	-	-	139	33.4	169	49.4	199	68.5
108 136 31.9 166 47.6 196 66.4	104	-	-	-	-	-	-	-	-	138	32.9	168	48.8	198	67.8
	106	-	-	-	-	-	-		-	137	32.4	167	48.2	197	67.1
110 135 31.4 165 47.0 195 65.7	108	-	-	-	-	-	-	-	-	136	31.9	166	47.6	196	66.4
	110	-	-	-	-	-	-	-	-	135	31.4	165	47.0	195	65.7

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

Page 174 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

 $k_{H,1}$ for Joist Hanger SAE and SAIX - Partial nailing - F1

KH,1 IOI		Joist Hanger SAE and SAIX - Partial nailing - F1												
	2	00	2	50	3	00	3.	40	38	0	44	0	50	0
	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ
	4	3	6	4	10	6	12	6	12	6	14	8	18	10
Α	В	k _{H,1}	В	k H,1										
32	84	7.7	109	11.7	134	22.3	154	25.0	174.0	31.4	204	41.2	234	58.6
34	83	7.5	108	11.5	133	22.0	153	24.7	173.0	31.1	203	40.8	233	58.2
36	82	7.4	107	11.3	132	21.7	152	24.4	172.0	30.7	202	40.5	232	57.7
38	81	7.2	106	11.1	131	21.4	151	24.1	171.0	30.4	201	40.1	231	57.2
40	80	7.1	105	10.9	130	21.1	150	23.8	170.0	30.1	200	39.7	230	56.8
42	79	7.0	104	10.7	129	20.8	149	23.5	169.0	29.8	199	39.4	229	56.3
44	78	6.8	103	10.6	128	20.6	148	23.2	168.0	29.4	198.0	39.0	228.0	55.9
46	77	6.7	102	10.4	127	20.3	147	22.9	167.0	29.1	197	38.7	227	55.4
48	76	6.5	101	10.2	126	20.0	146	22.6	166.0	28.8	196.0	38.3	226.0	55.0
50	75	6.4	100	10.0	125	19.7	145	22.3	165.0	28.5	195.0	37.9	225.0	54.5
52	74	6.3	99	9.8	124	19.4	144	22.0	164.0	28.2	194	37.6	224	54.1
54	73	6.1	98	9.6	123	19.1	143	21.7	163.0	27.8	193	37.2	223	53.6
56	72	6.0	97	9.4	122	18.9	142	21.4	162.0	27.5	192.0	36.9	222.0	53.2
58	71	5.8	96	9.3	121	18.6	141	21.1	161.0	27.2	191.0	36.5	221.0	52.7
60	70	5.7	95	9.1	120	18.3	140	20.8	160.0	26.9	190.0	36.2	220.0	52.3
62	69	5.6	94	8.9	119	18.0	139	20.5	159.0	26.6	189.0	35.8	219.0	51.8
64	68	5.4	93	8.7	118	17.7	138	20.2	158.0	26.3	188.0	35.5	218.0	51.4
66	67	5.3	92	8.5	117	17.4	137	19.9	157.0	25.9	187	35.1	217	50.9
68	66	5.2	91	8.4	116	17.2	136	19.6	156.0	25.6	186.0	34.7	216.0	50.5
70	65	5.0	90	8.2	115	16.9	135	19.3	155.0	25.3	185.0	34.4	215.0	50.0
72	64	4.9	89	8.0	-	-	-	-	154.0	25.0	184.0	34.0	214.0	49.6
74	63	4.7	88	7.8	-	-	-	-	153.0	24.7	183.0	33.7	213.0	49.2
76	62	4.6	87	7.6	-	-	-	-	152.0	24.4	182.0	33.4	212.0	48.7
78	61	4.5	86	7.5	-	-	-	-	151.0	24.1	181	33.0	211	48.3
80	60	4.3	85	7.3	-	-	-	-	150.0	23.8	180	32.7	210	47.8
82	-	-	-	-	-	-	-	-	149.0	23.5	179	32.3	209	47.4
84	-	-	-	-	-	-	-	-	148.0	23.2	178	32.0	208	47.0
86	-	-	-	-	-	-	-	-	147.0	22.9	177	31.6	207	46.5
88	-	-	-	-	-	-	-	-	146.0	22.6	176	31.3	206	46.1
90	-	-	-	-	-	-	-	-	145.0	22.3	175	30.9	205	45.7
92	-	-	-	-	-	-	-	-	144.0	22.0	174	30.6	204	45.2
94	-	-	-	-	-	-	-	-	143.0	21.7	173	30.3	203	44.8
96	-	-	-	-	-	-	-	-	142.0	21.4	172	29.9	202	44.4
98	-	-	-	-	-	-	-	-	141.0	21.1	171	29.6	201	43.9
100	-	-	-	-	-	-	-	-	140.0	20.8	170	29.3	200	43.5
102	-	-	-	-	-	-	-	-	139.0	20.5	169	28.9	199	43.1
104	-	-	-	-	-	-	-	-	138.0	20.2	168	28.6	198	42.7
106	-	-	-	-	-	-	-	-	137.0	19.9	167	28.3	197	42.2
108	-	-	-	-	-	-	-	-	136.0	19.6	166	27.9	196	41.8
110	-	-	-	-	-	- -	-	-	135.0	19.3	165	27.6	195	41.4

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation.

 $k_{H,2}$ for SAE - Full or partial nailing - F2

Blank		ber of nails header	k _{H2}					
	Full nailing	Partial nailing	Full nailing	Partial nailing				
200	8	4	5.6 3					
250	12	6	10.3	4.2				
300	18	10	19.9	11.4				
340	22	12	28.1	15.8				
380	22	12	28.1	15.8				
440	28	14	42.9	20.4				
500	34	18	60.8 32.9					

n_{i,ef,1} and n_{i,ef,2} for SAE - Full or partial nailing - F1 or F2

	Total num	ber of nails		-1	F2	
Diank	in the	e joist		1	Г	
Blank	Full politing	Doutiel neiling	Full nailing	Partial nailing	Full nailing	Partial nailing
	Full nailing	Partial nailing	n _{J,ef,1}	n _{J,ef,1}	n _{J,ef,2}	n _{J,ef,2}
200	5	4	1.29	1.29	1.26	1.24
250	7	4	2.84	2.13	2.69	1.92
300	10	6	6.15	3.9	5.54	3.4
340	12	6	8.76	4.91	7.69	4
380	12	6	8.76	4.91	7.69	4
440	15	8	12.92	7.59	11.06	5.99
500	18	10	17.08	10.69	14.46	8.21

SAE joist hangers are warranted for an installation on timber column. The partial nail pattern that applies then is the one described in <u>Annex B3</u> for connection to column and above coefficients, valid for partial nailing, apply.

Page 176 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

Characteristic capacity for SAE with Square twist nails - Full nailing - F1 - timber to timber

Model	Dim	ensions ¹⁾	Total no. twist nails 3	of square 3,75x30 mm	Characteristic capacity ²⁾
	Α	В	n _H	n _J	$R_{1,k}$
250	50	100	12	7	13.5
250	76	87	12	7	13.5
380	38	171	22	12	22.3
380	45	167.5	22	12	22.3
380	50	165	22	12	22.3
380	64	158	22	12	22.3
380	66	157	22	12	22.3
380	76	152	22	12	22.3
380	90	145	22	12	22.3
380	92	144	22	12	22.3
380	100	140	22	12	22.3
500	38	231	34	18	35
500	46	227	34	18	35
500	50	225	34	18	35
500	64	218	34	18	35
500	66	217	34	18	35
500	76	212	34	18	35
500	91	204.5	34	18	35
500	100	200	34	18	35
500	125	187.5	32	16	28

¹⁾ For futher dimensions see the section Dimensions of this annex 2) The characteristic capacity is given for Timber Grade C24 (characteristic density of 350 kg/m³)

Characteristic capacity for SAE - with connector screw SSH/SSF without pre drilling

			Produ	ct capac	ities - Ti	mber to T	imber - L	arge cor	nector s	crew		
		Fastener	S			С	haracteri	stic capa	cities - T	imber C2	24	
References		Header	J	oist		R	1.k		R _{2.k}			
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
	2	SSH10.0x40 ⁽¹⁾	5	CNA*	5,6	5,9	6,4	6,6	5,8	6,0	6,5	6,7
SAE200	2	SSH10.0x50 ⁽¹⁾	5	CNA*	6.5	6.8	7.4	7.7	6.8	7.1	7.7	7.9
	2	SSH10.0x100	5	CNA*	7.6	8.1	8.9	9.1	5.8	6.0	6.5	6.7
	2	SSH10.0x40 ⁽¹⁾	7	CNA*	7,1	7,2	7,2	7,2	7,0	7,2	7,2	7,2
SAE250	2	SSH10.0x50 ⁽¹⁾	7	CNA*	8.6	8.9	9.3	9.4	8.2	8.6	9.2	9.4
	2	SSH10.0x100	7	CNA*	10.0	10.2	10.7	10.8	7.0	7.2	8.3	8.9
SAE300	4	SSH12.0x60	10	CNA*	11,5	11,5	11,5	11,5	11,5	11,5	11,5	11,5
3AE300	4	SSH12.0x120	10	CNA*	13.5	13.7	13.7	13.7	11.5	11.7	13.7	13.7
SAE340	4	SSH12.0x60	12	CNA*	18,5	19,8	21,1	21,3	18,5	19,8	21,1	21,3
3AE340	4	SSH12.0x120	12	CNA*	18.5	20.4	24.6	25.1	18.5	19.8	21.1	21.3
SAE380	4	SSH12.0x60	12	CNA*	18,5	19,8	21,1	21,3	18,5	19,8	21,1	21,3
SAESOU	4	SSH12.0x120	12	CNA*	18.5	20.4	24.6	25.1	18.5	19.8	21.1	21.3
SAE440	4	SSH12.0x60	15	CNA*	22,1	22,8	23,0	23,0	22,1	22,8	23,0	23,0
3AL440	4	SSH12.0x120	15	CNA*	23.1	25.5	27.4	27.5	22.1	22.8	25.2	27.1
SAE500	6	SSH12.0x60	18	CNA*	27,7	30,6	33,4	33,6	27,7	30,6	33,4	33,6
3AL300	6	SSH12.0x120	18	CNA*	27.7	30.6	37.2	39.4	27.7	30.6	33.4	34.3

			Produ	ct capac	ities - Ti	mber to 1	imber - L	arge cor	nector s	crew		
		Fastener	S			С	haracteri	stic capa	cities - T	imber C2	24	
References		Header	Joist			R	3.k		R _{4.k}			
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
	2	SSH10.0x40 ⁽¹⁾	5	CNA*	2,1	2,6	3,7	4,2	5,0	5,0	5,0	5,0
SAE200	2	SSH10.0x50 ⁽¹⁾	5	CNA*	2.1	2.6	3.7	4.7	5,0	5,0	5,0	5,0
	2	SSH10.0x100	5	CNA*	2.1	2.6	3.7	4.7	5.0	5.0	5.0	5.0
	2	SSH10.0x40 ⁽¹⁾	7	CNA*	2,0	2,2	2,7	3,2	5,0	5,0	5,0	5,0
SAE250	2	SSH10.0x50 ⁽¹⁾	7	CNA*	2.6	2.9	3.5	4.1	5,0	5,0	5,0	5,0
	2	SSH10.0x100	7	CNA*	2.7	3.3	4.1	4.8	5.0	5.0	5.0	5.0
SAE300	4	SSH12.0x60	10	CNA*	3,4	3,6	4,1	4,6	5,0	5,0	5,0	5,0
SAESOO	4	SSH12.0x120	10	CNA*	3.5	4.3	4.9	5.5	5.0	5.0	5.0	5.0
SAE340	4	SSH12.0x60	12	CNA*	3,9	4,8	6,5	7,3	10,0	10,0	10,0	10,0
3AE340	4	SSH12.0x120	12	CNA*	3.9	4.8	7.0	8.8	10.0	10.0	10.0	10.0
SAE380	4	SSH12.0x60	12	CNA*	3,9	4,8	5,6	6,4	10,0	10,0	10,0	10,0
SAESOU	4	SSH12.0x120	12	CNA*	3.9	4.8	6.7	7.7	10.0	10.0	10.0	10.0
SAE440	4	SSH12.0x60	15	CNA*	4,2	4,9	5,4	6,0	10,0	10,0	10,0	10,0
3AE44U	4	SSH12.0x120	15	CNA*	4.2	5.3	6.4	7.1	10.0	10.0	10.0	10.0
SAE500	6	SSH12.0x60	18	CNA*	4,5	5,7	6,6	7,2	15,0	15,0	15,0	15,0
SAE500	6	SSH12.0x120	18	CNA*	4.5	5.7	7.9	8.6	15.0	15.0	15.0	15.0

⁽¹⁾SSH can be replaced by SSF

The user shall verify the transversal tension in timber, which is not included in these capacities.

There is no improvement of the characteristic values between SSH12.0x60 and SSH12.0x100 without pre drilling.

^{*}Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

Page 178 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

The capacity is increased for the following configuration:

		Product cap	acities	- Timber to Tin	nber - Large	connecto	or screw			
References		Faster	ers		Characteristic capacities - Timber C24					
		Header		Joist	В	В	В	В		
	Qty	Туре	Qty	Type	R _{1.k}	R _{2.k}	R _{3.k}	R _{4.k}		
SAE200/38/2	2	SSH10.0x40 ⁽¹⁾	5	CNA4.0x35	6.23	5.79	2.20	5.00		
SAE200/36/2	2	SSH10.0x100 ⁽¹⁾	5	CNA4.0x35	7.6	7.7	2.2	5		

⁽¹⁾ SSH can be replaced by SSF

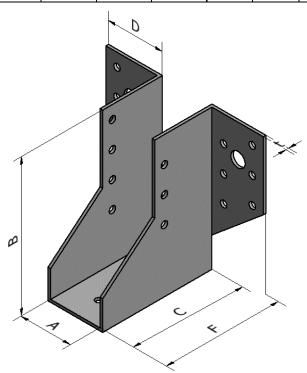
Characteristic capacity for SAE - with connector screw SSH/SSF with pre drilling

			Produ	ct capac	ities - Ti	mber to T	imber - L	arge cor	nector s	crew		
		Fastener	S			С	haracteri	stic capa	cities - T	imber C2	24	
References		Header	Joist			R	1.k		R _{2.k}			
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
SAE200	2	SSH10.0x50 ⁽¹⁾	5	CNA*	6.5	6.8	7.4	7.7	6.8	7.1	7.7	7.9
SAEZUU	2	SSH10.0x100	5	CNA*	7.6	8.4	9.5	9.9	7.7	8.4	9.2	9.4
SAE250	2	SSH10.0x50 ⁽¹⁾	7	CNA*	8.6	8.9	9.3	9.4	8.2	8.6	9.2	9.4
SAE250	2	SSH10.0x100	7	CNA*	10.7	11.5	12.4	12.7	9.5	9.9	10.5	10.6
SAE300	4	SSH12.0x60	10	CNA*	12.0	12.1	12.1	12.1	12.0	12.1	12.1	12.1
SAESUU	4	SSH12.0x120	10	CNA*	15.4	16.5	17.4	17.6	13.5	13.7	14.3	15.4
SAE340	4	SSH12.0x60	12	CNA*	18.5	20.3	22.0	22.3	18.5	20.3	22.0	22.3
SAE340	4	SSH12.0x120	12	CNA*	18.5	20.4	24.8	26.7	18.5	20.4	24.6	25.1
SAE380	4	SSH12.0x60	12	CNA*	18.5	20.3	22.0	22.3	18.5	20.3	22.0	22.3
SAESOU	4	SSH12.0x120	12	CNA*	18.5	20.4	24.8	26.7	18.5	20.4	24.6	25.1
SAE440	4	SSH12.0x60	15	CNA*	22.8	23.7	24.2	24.2	22.8	23.7	24.2	24.2
SAE440	4	SSH12.0x120	15	CNA*	23.1	25.5	31.0	33.4	23.1	25.5	27.4	27.5
SAE500	6	SSH12.0x60	18	CNA*	27.7	30.6	34.8	35.2	27.7	30.6	34.8	35.2
SAE500	6	SSH12.0x120	18	CNA*	27.7	30.6	37.2	40.1	27.7	30.6	37.2	39.4

		Product capacities - Timber to Timber - Large connector screw												
		Fasteners				Characteristic capacities - Timber C24								
References		Header		Joist		R _{3.k}				R _{4.k}				
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60		
CA E200	2	SSH10.0x50 ⁽¹⁾	5	CNA*	2.1	2.6	3.7	4.7	5.0	5.0	5.0	5.0		
SAE200	2	SSH10.0x100	5	CNA*	2.1	2.6	3.7	4.7	5.0	5.0	5.0	5.0		
SAE250	2	SSH10.0x50 ⁽¹⁾	7	CNA*	2.6	2.9	3.5	4.1	5.0	5.0	5.0	5.0		
	2	SSH10.0x100	7	CNA*	2.7	3.3	4.7	6.0	5.0	5.0	5.0	5.0		
045000	4	SSH12.0x60	10	CNA*	3.5	3.8	4.3	4.8	5.0	5.0	5.0	5.0		
SAE300	4	SSH12.0x120	10	CNA*	3.5	4.4	6.3	7.1	5.0	5.0	5.0	5.0		
SAE340	4	SSH12.0x60	12	CNA*	3.9	4.8	6.8	7.7	10.0	10.0	10.0	10.0		
3AE340	4	SSH12.0x120	12	CNA*	3.9	4.8	7.0	9.0	10.0	10.0	10.0	10.0		
SAE380	4	SSH12.0x60	12	CNA*	3.9	4.8	5.9	6.7	10.0	10.0	10.0	10.0		
SAESOU	4	SSH12.0x120	12	CNA*	3.9	4.8	7.0	9.0	10.0	10.0	10.0	10.0		
SAE440	4	SSH12.0x60	15	CNA*	4.2	5.1	5.7	6.3	10.0	10.0	10.0	10.0		
	4	SSH12.0x120	15	CNA*	4.2	5.3	7.8	9.2	10.0	10.0	10.0	10.0		
SAE500	6	SSH12.0x60	18	CNA*	4.5	5.7	6.9	7.6	15.0	15.0	15.0	15.0		
SAESUU	6	SSH12.0x120	18	CNA*	4.5	5.7	8.4	10.8	15.0	15.0	15.0	15.0		

⁽¹⁾SSH can be replaced by SSF

The user shall verify the transversal tension in timber, which is not included in these capacities.


^{*}Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

D30 SAE250/38/1,5 Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SAE250/38/1.5	Steel ref 1 - Steel ref 2	-

Dimensions

Dimensions [mm]								Holes					
Blank	Dimensions [min]							Hea	der		Jo	ist	
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size	
250	38	106	84	41.5	87	1.5	12	Ø5	2	Ø11	7	Ø5	
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-	

Characteristic capacity for SAE - Full nailing - Timber to timber

Model	Fasteners -	CNA4.0x35	Characteristic capacity [kN] - C24				
Wiodei	n _H	nJ	R _{1,k}	R _{2,k}	R _{3,k}		
SAE250/38/1.5	12	7	10.8	4.7	6.4		

To change the timber density instead of using the k_{dens} factor use in this specific case:

Timber class	C14	C16	C18	C20	C22	C24
Factor	0.91	0.93	0.95	0.96	0.98	1.00

Characteristic capacity for SAE - Timber to rigid support

		F	asteners	Characteristic conscitu [I/N]				
Model	Н	leader		Joist	Characteristic capacity [kN]			
	n _H	Туре	nJ	Туре	R _{1,k}	R _{2,k}	R _{3,k}	
SAE250/38/1.5	2	M10	7	CNA4.0x35	11.7	5.0	4.4	
SAE250/38/1.5*	2	M10	5	CNA4.0x35	11.7	4.3	4.4	

^{*}For joist > 95 mm

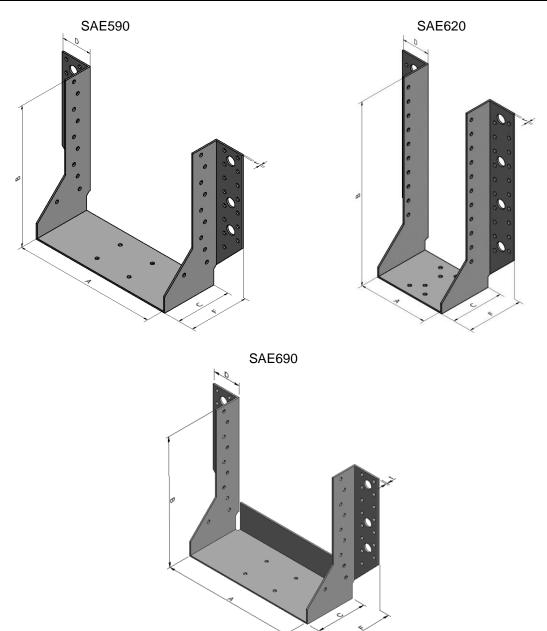
The check of the connection with the bolts has to be make as following.

The bolt group (both bolts) has to be as minimum:

a lateral capacity of $F_{i.d}$ x $f_{bolt.lat}^{\star\star}$ for the bolt on the far side of the force

an axial capacity of $F_{i.d}$ x $f_{bolt.ax}$

	f _{bolt.lat}	f _{bolt.ax}
R _{1,k}	1,00	0,40
R _{2,k}	1,00	1,22
R _{3,k}	1,00**	0,50


Timber elements have to be checked also according to EN 1995, 8.1.4 for direction force F2.

D31 SAE590, SAE620 and SAE690 Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SAE	Steel ref 1 - Steel ref 2	-

Dimensions

		Dime	Holes										
Blank	Dimensions [mm]							Header				Joist	
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size	
590	200	(590-A)/2	78	43	84	1.5 - 2	30	Ø5	6	Ø13	20	Ø5	
620-a	38-100	(620-A)/2	75	40	81	1.5 - 2	40	Ø5	8	Ø13	22	Ø5	
620-b	101-125	(620-A)/2	75	40	77	1.5 - 2	40	Ø5	8	Ø13	22	Ø5	
690	201-300	195	82	42	84	1.5 - 2	30	Ø5	6	Ø13	20	Ø5	
Permitted deviation	ı	-	±1.0	±1.0	±1.0	-	ı	-	ı	ı	ı	-	

Parameters have to be used with equation in Annex C

k_{H,1} for Joist Hanger SAE590 - SAE620 - SAE690 - Full nailing - F1

411,1							<u> </u>		
	5	90	62	20	62	20	6	90	
	nн	nJ	nн	nJ	nн	nл	nн	nJ	
	30	20	40	22	40	22	40	22	
Α	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}	
38	1	•	291	170.5	1	-	1	-	
45	1	•	287.5	166.5	ı	ı	1	-	
50	1	1	285	163.6	ı	1	1	-	
64	-	-	278	155.6	-	-	-	-	
76	-	-	272	148.8	-	-	-	-	
100	-	-	260	135.5	-	-	-	-	
125	-	-	-	-	247.5	132.6	-	-	
150	-	-	-	-	235	119.4	-	-	
200	195	105	210	85.4	-	-	-	-	
201-300	-	-	-	-	-	-	195	105	

 $k_{H,2}$ for SAE590 - SAE620 - SAE690 - Full or partial nailing - F2

	Total num	nber of nails		le .		
Blank	in the	header	K _{H2}			
	Full nailing	Partial nailing	Full nailing	Partial nailing		
590	30	16	81.5	40.9		
620-a	40	20	105.1	48.9		
620-b	40	22	114.7	61.3		
690	30	16	81.5	40.9		

 $n_{j,ef,1}$ and $n_{j,ef,2}$ for SAE590 - SAE620 - SAE690 - Full or partial nailing - F1 or F2

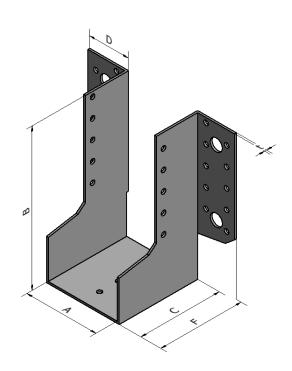
· <u>- j,e i, i</u> • • • • •	· · · j,e i,2 · · · · · · · · ·	-000 0/1-010	<u> </u>	an or partial ma	<u>g</u> o			
Diamir	Total number of nails in the joist Blank			F1	F2			
Biank	Full poiling	Dortiol noiling	Full nailing	Partial nailing	Full nailing	Partial nailing		
	Full nailing	Partial nailing	n _{J,ef,1}	n _{J,ef,1}	n _{J,ef,2}	n _{J,ef,2}		
590	20	10	18.46	9.11	15.9	7.42		
620-a	22	12	20.67	10.69	17.87	8.9		
620-b	22	12	22.35	12	18.92	9.62		
690	20	10	18.46	9.11	15.9	7.42		

SAE joist hangers are warranted for an installation on timber column. The partial nail pattern that applies then is the one described in <u>Annex B3</u> for connection to column and above coefficients, valid for partial nailing, apply.

Page 183 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

Characteristic capacity for SAE590 - SAE620 - SAE690 with Square twist nails - Full nailing - F1 timber to timber

Model	D	imensions ¹⁾	Total no. twist nails 3	of square 3,75x30 mm	Characteristic capacity ²⁾	
	Α	В	n _H	n,	R _{1,k}	
590	200	195	30	20	30	
620	38	291	40	22	50	
620	44	288	40	22	50	
620	50	285	40	22	50	
620	64	278	40	22	50	
620	76	272	40	22	50	
620	91	264.5	40	22	50	
620	100	260	40	22	50	
620	116	252	40	22	50	
620	125	247.5	40	22	50	
620	150	235	40	22	50	
620	195	200-300	30	20	30	


¹⁾ For further dimensions see the section Dimensions of this annex 2) The characteristic capacity is given for Timber Grade C24 (characteristic density of 350 kg/m3)

D32 SAEL Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SAEL	Steel ref 1 - Steel ref 2	-

Dimensions

		Dimon	oiono Ir	m m 1			Holes						
Blank		Dimen	sions [r	nmj				Hea	ader		J	loist	
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size	
200	24-80	(200-A)/2	84	41.5	86	2	8	Ø5	2	Ø11	5	Ø5	
250	24-80	(250-A)/2	84	41.5	86	2	12	Ø5	2	Ø11	7	Ø5	
300	24-116	(300-A)/2	84	41.5	86	2	18	Ø5	4	Ø13	10	Ø5	
340	24-116	(340-A)/2	84	41.5	86	2	22	Ø5	4	Ø13	12	Ø5	
380	24-156	(380-A)/2	84	41.5	86	2	22	Ø5	4	Ø13	12	Ø5	
440	24-156	(440-A)/2	84	41.5	86	2	28	Ø5	4	Ø13	15	Ø5	
500	24-156	(500-A)/2	84	41.5	86	2	34	Ø5	6	Ø13	18	Ø5	
Permitted deviation	-	-	±1.0	±1.0	±1.0	ı	-	-	1	-	-	-	

Parameters have to be used with equation in Annex C

k_{H,1} for Joist Hanger SAEL - Full nailing - F1

k _{H,1} for Jo	ist Har	nger SA	EL - F	ull naili	ng - F					
	3	00	3	40	3	80	4	40	5	00
	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ
	16	8	20	10	20	10	26	13	32	16
Α	В	k H,1	В	k _{H,1}	В	k _{H,1}	В	k H,1	В	k _{H,1}
32	134	31.1	154	41.2	174	51.5	204	71.5	234	94.5
34	133	30.6	153	40.7	173	51.0	203	70.9	233	93.8
36	132	30.2	152	40.2	172	50.5	202	70.2	232	93.0
38	131	29.8	151	39.7	171	49.9	201	69.6	231	92.3
40	130	29.4	150	39.2	170	49.4	200	69.0	230	91.5
42	129	29.0	149	38.7	169	48.9	199	68.3	229	90.8
44	128	28.5	148	38.2	168	48.4	198	67.7	228	90.0
46	127	28.1	147	37.7	167	47.9	197	67.0	227	89.3
48	126	27.7	146	37.2	166	47.3	196	66.4	226	88.5
50	125	27.3	145	36.7	165	46.8	195	65.8	225	87.8
52	124	26.9	144	36.2	164	46.3	194	65.1	224	87.0
54	123	26.4	143	35.7	163	45.8	193	64.5	223	86.3
56 58	122 121	26.0 25.6	142 141	35.2	162 161	45.3	192	63.9	222 221	85.5
60	120	25.0	140	34.7 34.3	160	44.8 44.2	191 190	63.2 62.6	220	84.8 84.0
62	119	24.8	139	33.8	159	43.7	189	62.0	219	83.3
64	118	24.4	138	33.3	158	43.2	188	61.4	218	82.6
66	117	24.4	137	32.8	157	42.7	187	60.7	217	81.8
68	116	23.6	136	32.3	156	42.2	186	60.1	216	81.1
70	115	23.2	135	31.9	155	41.7	185	59.5	215	80.4
72	114	22.8	134	31.4	154	41.2	184	58.9	214	79.6
74	113	22.4	133	30.9	153	40.7	183	58.3	213	78.9
76	112	22.0	132	30.4	152	40.2	182	57.6	212	78.2
78	111	21.6	131	30.0	151	39.7	181	57.0	211	77.5
80	110	21.2	130	29.5	150	39.2	180	56.4	210	76.7
82	109	20.8	129	29.0	149	38.7	179	55.8	209	76.0
84	108	20.4	128	28.6	148	38.2	178	55.2	208	75.3
86	107	20.0	127	28.1	147	37.7	177	54.6	207	74.6
88	106	19.6	126	27.7	146	37.2	176	54.0	206	73.9
90	105	19.2	125	27.2	145	36.7	175	53.4	205	73.2
92	104	18.9	124	26.8	144	36.2	174	52.8	204	72.5
94	103	18.5	123	26.3	143	35.7	173	52.2	203	71.7
96	102	18.1	122	25.9	142	35.2	172	51.6	202	71.0
98	101	17.7	121	25.4	141	34.7	171	51.0	201	70.3
100	100	17.4	120	25.0	140	34.3	170	50.4	200	69.6
102	99	17.0	119	24.5	139	33.8	169	49.8	199	68.9
104	98	16.6	118	24.1	138	33.3	168	49.2	198	68.2
106	97	16.3	117	23.7	137	32.8	167	48.6	197	67.5
108	96	15.9	116	23.2	136	32.3	166	48.0	196	66.9
110	95	15.5	115	22.8	135	31.9	165	47.5	195	66.2
112	94	15.2	114	22.4	134	31.4	164	46.9	194	65.5
114	93	14.8	113	22.0	133	30.9	163	46.3	193	64.8
116	92	14.5	112	21.6	132	30.4	162	45.7	192	64.1
118	91	14.2	111	21.1	131	30.0	161	45.1	191	63.4
120	90	13.8	110	20.7	130	29.5	160	44.6	190	62.7
122	-	-	-	-	129	29.0	159	44.0	189	62.1
124	-	-	-	-	128	28.6	158	43.4	188	61.4
126	-	-	-	-	127	28.1	157	42.9	187	60.7
128	-	-	-	-	126	27.7	156	42.3	186	60.1
130	-	-	-	-	125	27.2	155	41.7	185	59.4
132	-	-	-	-	124	26.8	154	41.2	184	58.7
134	-	-	-	-	123	26.3	153	40.6	183	58.1
136	-	-	-	-	122 121	25.9 25.4	152	40.1	182	57.4 56.8
138 140	-	-	-	-			151	39.5	181	56.8 56.1
140	-	-	-	-	120	25.0	150	39.0	180	56.1

Page 186 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

142	-	-	-	-	119	24.5	149	38.4	179	55.5
144	-	-	-	-	118	24.1	148	37.9	178	54.8
146	-	-	-	-	117	23.7	147	37.4	177	54.2
148	-	-	1	-	116	23.2	146	36.8	176	53.6
150	-	-	1	-	115	22.8	145	36.3	175	52.9
152	-	-	1	-	114	22.4	144	35.8	174	52.3
154	-	-	1	-	113	22.0	143	35.3	173	51.7
156	-	-	1	-	112	21.6	142	34.7	172	51.0
158	-	-	-	-	111	21.1	141	34.2	171	50.4
160	-	-	-	-	110	20.7	140	33.7	170	49.8

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation.

k_{H,1} for Joist Hanger SAEL - Partial nailing - F1

K _{H,1} for Joist	for Joist Hanger SAEL - Partial nailing - F1									
	3	00	3	40	3	80	4	40	5	00
	nн	nJ	nн	nJ	nн	nJ	nн	nJ	n _H	nJ
	8	4	10	6	10	6	12	7	16	8
Α	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1
32	134	18.8	154	24.0	174	29.4	204	38.8	234	55.7
34	133	18.6	153	23.8	173	29.1	203	38.5	233	55.3
36	132	18.3	152	23.5	172	28.8	202	38.2	232	54.9
38	131	18.1	151	23.3	171	28.5	201	37.9	231	54.5
40	130	17.9	150	23.0	170	28.3	200	37.6	230	54.1
42	129	17.6	149	22.8	169	28.0	199	37.3	229	53.7
44	128	17.4	148	22.5	168	27.7	198	37.0	228	53.3
46 48	127 126	17.2 17.0	147 146	22.3 22.0	167 166	27.5 27.2	197 196	36.7 36.4	227 226	53.0 52.6
50	125	16.7	145	21.8	165	26.9	195	36.1	225	52.0
52	124	16.5	144	21.5	164	26.7	194	35.8	224	51.8
54	123	16.3	143	21.3	163	26.4	193	35.5	223	51.5
56	122	16.1	142	21.0	162	26.1	192	35.2	222	51.1
58	121	15.9	141	20.8	161	25.9	191	35.0	221	50.7
60	120	15.6	140	20.5	160	25.6	190	34.7	220	50.3
62	119	15.4	139	20.3	159	25.3	189	34.4	219	50.0
64	118	15.2	138	20.0	158	25.1	188	34.1	218	49.6
66	117	15.0	137	19.8	157	24.8	187	33.8	217	49.2
68	116	14.8	136	19.6	156	24.6	186	33.5	216	48.8
70	115	14.6	135	19.3	155	24.3	185	33.2	215	48.5
72 74	114 113	14.3 14.1	134 133	19.1 18.9	154 153	24.0 23.8	184 183	32.9 32.6	214 213	48.1 47.7
76	112	13.9	132	18.6	152	23.5	182	32.4	212	47.7
78	111	13.7	131	18.4	151	23.3	181	32.1	211	47.0
80	110	13.5	130	18.2	150	23.0	180	31.8	210	46.7
82	109	13.3	129	17.9	149	22.8	179	31.5	209	46.3
84	108	13.1	128	17.7	148	22.5	178	31.2	208	45.9
86	107	12.9	127	17.5	147	22.3	177	30.9	207	45.6
88	106	12.7	126	17.2	146	22.0	176	30.7	206	45.2
90	105	12.5	125	17.0	145	21.8	175	30.4	205	44.9
92	104	12.3	124	16.8	144	21.5	174	30.1	204	44.5
94	103	12.1	123	16.6	143	21.3	173	29.8	203 202	44.2
96 98	102 101	11.9 11.7	122 121	16.4 16.1	142 141	21.0	172 171	29.6 29.3	202	43.8 43.5
100	100	11.7	120	15.9	140	20.5	170	29.0	200	43.1
102	99	11.3	119	15.7	139	20.3	169	28.8	199	42.8
104	98	11.1	118	15.5	138	20.0	168	28.5	198	42.4
106	97	11.0	117	15.3	137	19.8	167	28.2	197	42.1
108	96	10.8	116	15.1	136	19.6	166	28.0	196	41.7
110	95	10.6	115	14.9	135	19.3	165	27.7	195	41.4
112	94	10.4	114	14.7	134	19.1	164	27.4	194	41.1
114	93	10.3	113	14.5	133	18.9	163	27.2	193	40.7
116	92	10.1	112	14.3	132	18.6	162	26.9	192	40.4
118	91	9.9	111	14.1	131	18.4	161	26.6	191	40.1
120 122	90	9.7	110	13.9	130 129	18.2 17.9	160 159	26.4 26.1	190 189	39.7 39.4
124	-	-	-	-	128	17.7	158	25.9	188	39.4
126	-	-		-	127	17.7	157	25.6	187	38.7
128	-	-	-	-	126	17.2	156	25.4	186	38.4
130	-	-	-	-	125	17.0	155	25.1	185	38.1
132	-	-	-	-	124	16.8	154	24.9	184	37.8
134	-	-	-	-	123	16.6	153	24.6	183	37.5
136	-	-	-	-	122	16.4	152	24.4	182	37.1
138	-	-	-	-	121	16.1	151	24.2	181	36.8
140	-	-	-	-	120	15.9	150	23.9	180	36.5

Page 188 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

142	-	-	-	-	119	15.7	149	23.7	179	36.2
144	-	-	-	-	118	15.5	148	23.5	178	35.9
146	-	-	-	-	117	15.3	147	23.2	177	35.6
148	-	-	-	-	116	15.1	146	23.0	176	35.3
150	-	-	-	-	115	14.9	145	22.8	175	35.0
152	-	-	-	-	114	14.7	144	22.5	174	34.7
154	-	-	-	-	113	14.5	143	22.3	173	34.4
156	-	-	-	-	112	14.3	142	22.1	172	34.1
158	-	-	-	-	111	14.1	141	21.9	171	33.8
160	-	-	-	-	110	13.9	140	21.7	170	33.5

In the case of intermediate width, $k_{H,1}$ can be calculated by linear interpolation.

k_{H,2} for SAEL - Full or partial nailing - F2

	Total num	nber of nails		k _{H2}
Blank	in the	header		
	Full nailing	Partial nailing	Full nailing	Partial nailing
300	16	8	16.4	7.9
340	20	10	23.8	11.4
380	20	10	23.8	11.4
440	26	12	37.6	21.9
500	32	16	54.5	25.9

 $n_{j,ef,1}$ and $n_{j,ef,2}$ for SAEL - Full or partial nailing - F1 or F2

	Total num	ber of nails		F1		F2
Blank	in the	e joist				_
DIAIIK		Portiol poiling	Full nailing	Partial nailing	Full nailing	Partial nailing
	Full halling	Partial nailing	n _{J,ef,1}	n _{J,ef,1}	n _{J,ef,2}	n _{J,ef,2}
300	8	4	3.83 2.59		3.57	2.23
340	10	6	6.15	4.22	5.54	3.61
380	10	6	6.15	4.22	5.54	3.61
440	13	8	10.13	6.45	8.81	5.38
500	16	8	14.31	14.31 7.78		6.08

SAEL joist hangers are warranted for an installation on timber column. The partial nail pattern that applies then is the one described in <u>Annex B3</u> for connection to column and above coefficients, valid for partial nailing, apply.

Characteristic capacity for SAEL with Square twist nails - Full nailing - F1 - timber to timber

Model	Dimen	sions ¹⁾	Total no. twist nails 3	Characteristic capacity ²⁾		
	Α	В	n _H	nJ	R _{1,k}	
500	150	175	32	16	28	

¹⁾For futher dimensions see the section Dimensions of this annex

²⁾ The characteristic capacity is given for Timber Grade C24 (characteristic density of 350 kg/m³)

Characteristic capacity for SAEL - with connector screw SSH/SSF without pre drilling

			Produc	t capaci	ities - Timber to Timber - Large connector screw									
		Fastene	'S			С	haracteri	stic capa	cities - T	imber C2	24			
References		Header	Jo	oist		R	1.k			R	2.k			
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60		
CAEL 200	4	SSH12.0x60	8	CNA*	10,7	11,0	11,4	11,5	10,8	11,1	11,4	11,5		
SAEL300	4	SSH12.0x120	8	CNA*	12.3	13.1	13.5	13.6	12.3	13.2	13.5	13.6		
SAEL340	4	SSH12.0x60	10	CNA*	15,4	17,0	19,2	19,8	15,4	17,0	19,8	20,3		
SAEL340	4	SSH12.0x120	10	CNA*	15.4	17.0	20.7	22.3	15.4	17.0	20.7	22.3		
SAEL380	4	SSH12.0x60	10	CNA*	15,4	17,0	19,2	19,8	15,4	17,0	19,8	20,3		
SAELSOU	4	SSH12.0x120	10	CNA*	15.4	17.0	20.7	22.3	15.4	17.0	20.7	22.3		
SAEL440	4	SSH12.0x60	13	CNA*	19,9	21,2	22,8	23,0	20,0	21,6	22,8	23,0		
SAEL440	4	SSH12.0x120	13	CNA*	20.0	22.1	26.4	27.0	20.0	22.1	26.7	27.1		
SAEL500	6	SSH12.0x60	16	CNA*	24,6	27,2	31,8	32,8	24,6	27,2	32,2	33,0		
SAEL500	6	SSH12.0x120	16	CNA*	24.6	27.2	33.1	35.7	24.6	27.2	33.1	35.7		

			Produc	ct capaci	ities - Timber to Timber - Large connector screw									
		Fastener	'S			С	haracteri	stic capa	cities - T	imber C2	24			
References		Header	Jo	oist		R	3.k		R _{4.k}					
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60		
CAEL 200	4	SSH12.0x60	8	CNA*	3,0	3,6	4,1	4,6	5,0	5,0	5,0	5,0		
SAEL300	4	SSH12.0x120	8	CNA*	3.0	3.8	4.9	5.5	5.0	5.0	5.0	5.0		
SAEL340	4	SSH12.0x60	10	CNA*	3,5	4,4	6,3	7,3	10,0	10,0	10,0	10,0		
SAEL340	4	SSH12.0x120	10	CNA*	3.5	4.4	6.3	8.0	10.0	10.0	10.0	10.0		
SAEL380	4	SSH12.0x60	10	CNA*	3,5	4,4	5,6	6,4	10,0	10,0	10,0	10,0		
SAELSOU	4	SSH12.0x120	10	CNA*	3.5	4.4	6.3	7.7	10.0	10.0	10.0	10.0		
CAEL 440	4	SSH12.0x60	13	CNA*	4,0	4,9	5,4	6,0	10,0	10,0	10,0	10,0		
SAEL440	4	SSH12.0x120	13	CNA*	4.0	5.0	6.4	7.1	10.0	10.0	10.0	10.0		
SAEL500	6	SSH12.0x60	16	CNA*	4,3	5,4	6,6	7,2	15,0	15,0	15,0	15,0		
SAELSUU	6	SSH12.0x120	16	CNA*	4.3	5.4	7.9	8.6	15.0	15.0	15.0	15.0		

The user shall verify the transversal tension in timber, which is not included in these capacities.

There is no improvement of the characteristic values between SSH12.0x60 and SSH12.0x100 without pre drilling.

^{*}Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

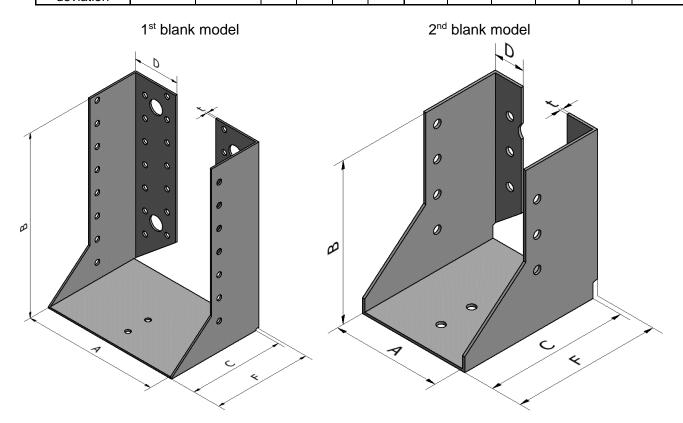
Page 190 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

Characteristic capacity for SAEL - with connector screw SSH/SSF with pre drilling

			Produc	t capac	ities - Timber to Timber - Large connector screw									
		Fastene	rs			С	haracteri	stic capa	cities - T	imber C2	24			
References		Header	Jo	oist		R	1.k		R _{2.k}					
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60		
CAEL 200	4	SSH12.0x60	8	CNA*	11.2	11.5	11.9	12.0	11.3	11.6	11.9	12.0		
SAEL300	4	SSH12.0x120	8	CNA*	12.3	13.6	16.2	16.6	12.3	13.6	16.3	16.7		
SAEL340	4	SSH12.0x60	10	CNA*	15.4	17.0	19.8	20.5	15.4	17.0	20.4	21.1		
SAEL340	4	SSH12.0x120	10	CNA*	15.4	17.0	20.7	22.3	15.4	17.0	20.7	22.3		
SAEL380	4	SSH12.0x60	10	CNA*	15.4	17.0	19.8	20.5	15.4	17.0	20.4	21.1		
SAELSOU	4	SSH12.0x120	10	CNA*	15.4	17.0	20.7	22.3	15.4	17.0	20.7	22.3		
SAEL440	4	SSH12.0x60	13	CNA*	20.0	21.8	23.7	24.0	20.0	22.1	23.8	24.1		
SAEL440	4	SSH12.0x120	13	CNA*	20.0	22.1	26.9	29.0	20.0	22.1	26.9	29.0		
SAEL500	6	SSH12.0x60	16	CNA*	24.6	27.2	32.6	33.9	24.6	27.2	33.0	34.3		
SAEL500	6	SSH12.0x120	16	CNA*	24.6	27.2	33.1	35.7	24.6	27.2	33.1	35.7		

			Produc	ct capaci	ities - Timber to Timber - Large connector screw										
		Fastener	rs			С	haracteri	stic capa	cities - T	imber C2	24				
References		Header	Jo	oist		R	3.k		R _{4.k}						
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60			
CAEL 200	4	SSH12.0x60	8	CNA*	3.0	3.8	4.3	4.8	5.0	5.0	5.0	5.0			
SAEL300	4	SSH12.0x120	8	CNA*	3.0	3.8	5.4	6.9	5.0	5.0	5.0	5.0			
SAEL340	4	SSH12.0x60	10	CNA*	3.5	4.4	6.3	7.7	10.0	10.0	10.0	10.0			
SAEL340	4	SSH12.0x120	10	CNA*	3.5	4.4	6.3	8.0	10.0	10.0	10.0	10.0			
SAEL380	4	SSH12.0x60	10	CNA*	3.5	4.4	5.9	6.7	10.0	10.0	10.0	10.0			
SAELSOU	4	SSH12.0x120	10	CNA*	3.5	4.4	6.3	8.0	10.0	10.0	10.0	10.0			
SAEL440	4	SSH12.0x60	13	CNA*	4.0	5.0	5.7	6.3	10.0	10.0	10.0	10.0			
SAEL440	4	SSH12.0x120	13	CNA*	4.0	5.0	7.3	9.2	10.0	10.0	10.0	10.0			
SAEL500	6	SSH12.0x60	16	CNA*	4.3	5.4	6.9	7.6	15.0	15.0	15.0	15.0			
SALLOU	6	SSH12.0x120	16	CNA*	4.3	5.4	8.0	10.3	15.0	15.0	15.0	15.0			

The user shall verify the transversal tension in timber, which is not included in these capacities.


*Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

D33 SAI Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SAI	Steel ref 1 - Steel ref 2	-

Dimensions

			Dimono	iona [mm1					Н	oles		
	Blank		Dimens	ions [mmj				Hea	der		Joist	
		Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
	200	64-80	(200-A)/2	76	33.5	82	2	6	Ø5	2	Ø12	4	Ø5
<u>-</u>	250	64-80	(250-A)/2	76	33.5	82	2	10	Ø5	2	Ø12	6	Ø5
Blank model	300	64-80	(300-A)/2	76	33.5	82	2	16	Ø5	4	Ø12	9	Ø5
nk r	340	64-120	(340-A)/2	76	33.5	82	2	16	Ø5	4	Ø12	10	Ø5
	380	64-120	(380-A)/2	76	33.5	82	2	20	Ø5	4	Ø12	12	Ø5
1st	440	64-120	(440-A)/2	76	33.5	82	2	26	Ø5	4	Ø12	15	Ø5
	500	64-120	(500-A)/2	76	33.5	82	2	32	Ø5	6	Ø12	18	Ø5
2nd blank model	200	38-63	(200-A)/2	76	17.5	82	2	4	Ø5	1	-	4	Ø5
2nd blank	250	38-63	(250-A)/2	76	17.5	82	2	6	Ø5	-	-	6	Ø5
	Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Page 192 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

Parameters have to be used with equation in Annex C

k_{H,1} for Joist Hanger SAI 1st blank model - Full nailing - F1

KH,1 101 0		200	1	250		00		40	380		440		500	
	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ
	6	4	10	6	16	9	16	10	20	12	26	15	32	18
Α	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}
64	68	6.3	93	11.8	118	21.5	138	29.1	158	39.1	188	58.4	218	77.3
66	67	6.1	92	11.5	117	21.1	137	28.7	157	38.6	187	57.8	217	76.6
68	66	5.9	91	11.2	116	20.7	136	28.3	156	38.2	186	57.2	216	75.8
70	65	5.7	90	10.9	115	20.3	135	27.9	155	37.7	185	56.6	215	75.1
72	64	5.5	89	10.7	114	20.0	134	27.5	154	37.2	184	56.0	214	74.4
74	63	5.3	88	10.4	113	19.6	133	27.1	153	36.7	183	55.4	213	73.7
76	62	5.2	87	10.1	112	19.2	132	26.7	152	36.2	182	54.8	212	73.0
78	61	5.0	86	9.9	111	18.9	131	26.3	151	35.8	181	54.2	211	72.3
80	60	4.8	85	9.6	110	18.5	130	25.9	150	35.3	180	53.6	210	71.6
82	-	1	-	•	109	18.1	129	25.5	149	34.8	179	53.0	209	70.9
84	-	1	-	•	108	17.8	128	25.1	148	34.3	178	52.4	208	70.2
86	-	ı	-	•	107	17.4	127	24.7	147	33.9	177	51.8	207	69.5
88	-	1	-	•	106	17.1	126	24.3	146	33.4	176	51.2	206	68.8
90	-	-	-	•	105	16.7	125	23.9	145	32.9	175	50.6	205	68.2
92	-	1	-	•	104	16.4	124	23.5	144	32.5	174	50.0	204	67.5
94	-	-	-	-	103	16.0	123	23.1	143	32.0	173	49.4	203	66.8
96	-	1	-	•	102	15.7	122	22.7	142	31.5	172	48.9	202	66.1
98	-	-	-	-	101	15.3	121	22.4	141	31.1	171	48.3	201	65.4
100	-	-	-	-	100	15.0	120	22.0	140	30.6	170	47.7	200	64.8
102	-	-	-	-	99	14.7	119	21.6	139	30.2	169	47.1	199	64.1
104	-	-	-	-	98	14.3	118	21.2	138	29.7	168	46.5	198	63.4
106	-	-	-	-	97	14.0	117	20.8	137	29.3	167	46.0	197	62.7
108	-	-	-	-	96	13.7	116	20.5	136	28.8	166	45.4	196	62.1
110	-	-	-	-	95	13.4	115	20.1	135	28.4	165	44.8	195	61.4
112	-	-	-	-	94	13.0	114	19.7	134	27.9	164	44.3	194	60.7
114	-	-	-	-	93	12.7	113	19.3	133	27.5	163	43.7	193	60.1
116	-	-	-	-	92	12.4	112	19	132	27.0	162	43.1	192	59.4
118	-	-	-	-	91	12.1	111	18.6	131	26.6	161	42.6	191	58.8
120	-	-	-	-	90	11.8	110	18.3	130	26.2	160	42.0	190	58.1

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

Page 193 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

k_{H,1} for Joist Hanger SAI 2nd blank model - Full nailing - F1

1,,,,		00	25	50
	nн	nл	nн	nJ
	4	4	6	6
Α	В	k _{H,1}	В	k _{H,1}
38	81	5.2	106	8.1
40	80	5.0	105	7.9
42	79	4.9	104	7.8
44	78	4.8	103	7.6
46	77	4.7	102	7.5
48	76	4.5	101	7.3
50	75	4.4	100	7.1
52	74	4.3	99	7.0
54	73	4.2	98	6.8
56	72	4.0	97	6.7
58	71	3.9	96	6.5
60	70	3.8	95	6.4
62	69	3.7	94	6.2
63	69	3.6	94	6.1

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

Page 194 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

k_{H,1} for Joist Hanger SAI 1st blank model - Partial nailing - F1

		AI 1St blank model - Partial								40	500			
		200		250	3	00	3	40	3	80	4	40	5	00
	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ
	-	-	6	6	10	9	10	10	12	12	14	15	18	18
Α	В	k H.1	В	k H.1	В	k H.1	В	k H.1	В	k H.1	В	k H.1	В	k H.1
64	-	-	93	6.5	118	14.1	138	19.3	158	25.5	188	31.1	218	45.7
66	-	-	92	6.4	117	13.9	137	19	157	25.2	187	30.8	217	45.3
68	-	-	91	6.2	116	13.7	136	18.7	156	24.9	186	30.4	216	44.9
70	-	-	90	6	115	13.4	135	18.5	155	24.5	185	30.1	215	44.5
72	-	-	89	5.9	114	13.2	134	18.2	154	24.2	184	29.8	214	44.1
74	-	-	88	5.7	113	13	133	17.9	153	23.9	183	29.4	213	43.7
76	-	-	87	5.5	112	12.7	132	17.7	152	23.6	182	29.1	212	43.3
78	-	-	86	5.4	111	12.5	131	17.4	151	23.3	181	28.8	211	42.9
80	-	-	85	5.2	110	12.3	130	17.2	150	23	180	28.4	210	42.5
82	-	-	-	•	109	12	129	16.9	149	22.7	179	28.1	209	42.1
84	-	•	ı	ı	108	11.8	128	16.6	148	22.4	178	27.8	208	41.7
86	-	•	ı	ı	107	11.6	127	16.4	147	22.1	177	27.4	207	41.3
88	-	-	-	•	106	11.4	126	16.1	146	21.8	176	27.1	206	40.9
90	-	•	ı	ı	105	11.1	125	15.9	145	21.5	175	26.8	205	40.5
92	-	•	ı	ı	104	10.9	124	15.6	144	21.2	174	26.5	204	40.1
94	-	-	-	•	103	10.7	123	15.4	143	20.9	173	26.1	203	39.7
96	-	-	-	-	102	10.5	122	15.1	142	20.6	172	25.8	202	39.3
98	-	-	-	-	101	10.3	121	14.9	141	20.3	171	25.5	201	38.9
100	-	-	-	•	100	10.1	120	14.6	140	20.1	170	25.2	200	38.5
102	-	•	ı	ı	99	9.9	119	14.4	139	19.8	169	24.9	199	38.1
104	-	•	1	-	98	9.7	118	14.1	138	19.5	168	24.5	198	37.7
106	-	-	-	-	97	9.5	117	13.9	137	19.2	167	24.2	197	37.3
108	-	-	-	-	96	9.3	116	13.7	136	18.9	166	23.9	196	37
110	-	-	-	-	95	9.1	115	13.4	135	18.6	165	23.6	195	36.6
112	-	-	-	-	94	8.9	114	13.2	134	18.3	164	23.3	194	36.2
114	-	-	ı	-	93	8.7	113	13	133	18.1	163	23	193	35.8
116	-	-	-	-	92	8.5	112	12.7	132	17.8	162	22.7	192	35.4
118	-	-	-	-	91	8.3	111	12.5	131	17.5	161	22.4	191	35.1
120	-	-	-	-	90	8.2	110	12.3	130	17.2	160	22.1	190	34.7

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

k_{H,2} for SAI - Full or partial nailing - F2

	Blank		ımber of nails ne header	k _{H2}			
		Full nailing	Full nailing Partial nailing		Partial nailing		
	200	6	4	3.6	2.5		
<u>e</u>	250	10	4	7.5	2.4		
1st Bblank model	300	15	8	13.5	7.6		
an Ar	340	15	8	13.5	7.6		
Bbla	380	18	10	19.2	12.1		
- st	440	23	12	28.2	15		
	500	28	14	41.3	19.6		
및 논 평 200		4	-	2.5	-		
2 nd blank model	250	6	-	4.7	-		

 $n_{j,ef,1}$ and $n_{j,ef,2}$ for SAI - Full or partial nailing - F1 or F2

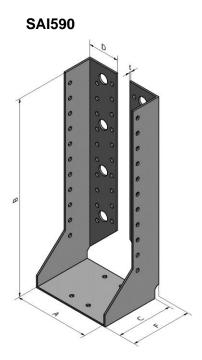
,,,.	,,,,,	Total nur	nber of nails		F1		F2
		in tl	he joist		FI		ΓZ
	Blank	Full	Partial nailing	Full nailing	Partial nailing	Full nailing	Partial nailing
		nailing	J	n _{J.ef.1}	n _{J.ef.1}	n _{J.ef.2}	n _{J.ef.2}
	200	4	4	1.84	1.84	1.7	1.7
-	250	6	4	1.91	1.6	1.84	1.51
l ou	300	10	6	5.95	3.77	5.39	3.31
1st Blank model	340	10	6	5.95	5.69	5.39	4.4
Bla	380	12	6	8.5	4.75	7.52	3.92
1st	440	14	8	11.22	7.21	9.74	5.8
	500	18	8	16.75	10.46	14.27	8.1
z z z	380	4	-	1.84	-	1.7	-
2nd blank model	440	6	-	1.91	-	1.84	-

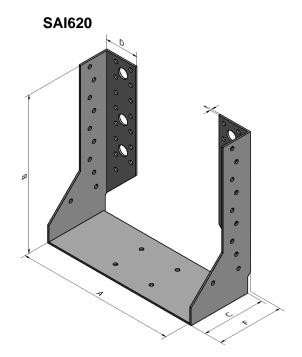
SAI joist hangers are warranted for an installation on timber column. The partial nail pattern that applies then is the one described in Annex B3 for connection to column and above coefficients, valid for partial nailing, apply.

Characteristic capacity for SAI with Square twist nails - Full nailing - F1 - timber to timber

	Model	Dim	Dimensions ¹⁾		of square s 3,75x30 m	Characteristic capacity ²⁾	
		Α	В	n _H	nJ	R _{1,k}	
_	380	90	145	20	12	20.3	
ope	380	100	140	20	12	20.3	
×	500	91	204.5	32	18	28	
lank	500	100	200	32	18	28	
1 st blank Model	500	125	187.5	32	16	28	
_	500	150	175	32	16	28	

¹⁾ For further dimensions see the section Dimensions of this annex


²⁾ The characteristic capacity is given for Timber Grade C24 (characteristic density of 350 kg/m³)


D34 SAI590, SAI620 Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SAI	Steel ref 1 - Steel ref 2	-

Dimensions

		Dime		Holes								
Dimensions [mm] Blank							Header				Joist	
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
590	200	(590-A)/2	78	43	84	1.5 - 2	30	Ø5	6	Ø13	20	Ø5
620-a	90-100	(620-A)/2	75	40	81	1.5 - 2	40	Ø5	8	Ø13	22	Ø5
620-b	101-200	(620-A)/2	75	40	77	1.5 - 2	40	Ø5	8	Ø13	22	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Parameters have to be used with equation in Annex C.

k_{H,1} for Joist Hanger SAI590 - SAI620 - Full nailing - F1

See SAE590, SAE620 and SAE690 Joist hanger

k_{H,2} for SAI590 - SAI620 - Full or partial nailing - F2

See SAE590, SAE620 and SAE690 Joist hanger

 $n_{j,\text{ef},1}$ and $n_{j,\text{ef},2}$ for SAI590 - SAI620 - Full or partial nailing - F1 or F2

See SAE590, SAE620 and SAE690 Joist hanger

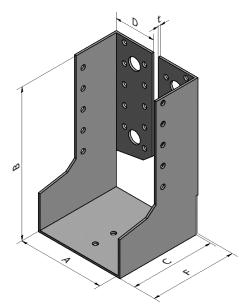
SAI joist hangers are warranted for an installation on timber column. The partial nail pattern that applies then is the one described in <u>Annex B3</u> for connection to column and above coefficients, valid for partial nailing, apply.

Characteristic capacity for SAI590 - SAI620 with Square twist nails - Full nailing - F1 - timber to timber

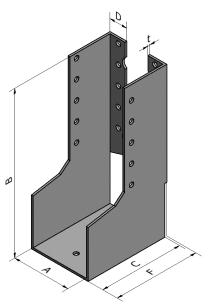
Model	Dim	ensions ¹⁾	Total no. twist nails 3	Characteristic capacity ²⁾	
	Α	В	n _H	nJ	R _{1,k}
590	200	195	30	20	30
620	91	264.5	40	22	35
620	100	260	40	22	35
620	116	252	40	22	35
620	125	247.5	40	22	35
620	150	235	40	22	35

¹⁾ For futher dimensions see the section Dimensions of this annex

²⁾ The characteristic capacity is given for Timber Grade C24 (characteristic density of 350 kg/m³)


D35 SAIL Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SAIL	Steel ref 1 - Steel ref 2	-


Dimensions

			Dimono	ione I	mml					Но	oles			
	Blank		Dimensions [mm]						Header				Joist	
		Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size	
el	300	80-120	(300-A)/2	84	41.5	86	2	16	Ø5	4	Ø13	8	Ø5	
Blank model	340	80-120	(340-A)/2	84	41.5	86	2	20	Ø5	4	Ø13	10	Ø5	
nk r	380	80-160	(380-A)/2	84	41.5	86	2	20	Ø5	4	Ø13	10	Ø5	
t Bla	440	80-160	(440-A)/2	84	41.5	86	2	26	Ø5	4	Ø13	13	Ø5	
1^{st}	500	80-160	(500-A)/2	84	41.5	86	2	32	Ø5	6	Ø13	16	Ø5	
_	300	38-79	(300-A)/2	84	18.5	86	2	8	Ø5	-	-	10	Ø5	
node	340	38-79	(340-A)/2	84	18.5	86	2	10	Ø5	-	-	10	Ø5	
ank n	380	38-79	(380-A)/2	84	18.5	86	2	10	Ø5	-	-	12	Ø5	
2 nd blank model	440	38-79	(440-A)/2	84	18.5	86	2	12	Ø5	-	-	14	Ø5	
2	500	38-79	(500-A)/2	84	18.5	86	2	16	Ø5	-	-	18	Ø5	
	Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-	

1st blank model

2nd blank model

Parameters have to be used with equation in Annex C.

k_{H,1} for Joist Hanger SAIL 1st blank model - Full nailing - F1

_{I,1} for Jo		00		40		80			5	00
								1		1
	n _H	nJ	n _H	n _J						
^	16	9	16	10	20	12	26	15	32	18
Α	В	k _{H,1}								
80	110	21.2	130	29.5	150	39.2	180	56.4	210	76.7
82	109	20.8	129	29.0	149	38.7	179	55.8	209	76.0
84	108	20.4	128	28.6	148	38.2	178	55.2	208	75.3
86	107	20.0	127	28.1	147	37.7	177	54.6	207	74.6
88	106	19.6	126	27.7	146	37.2	176	54.0	206	73.9
90	105	19.2	125	27.2	145	36.7	175	53.4	205	73.2
92	104	18.9	124	26.8	144	36.2	174	52.8	204	72.5
94	103	18.5	123	26.3	143	35.7	173	52.2	203	71.7
96	102	18.1	122	25.9	142	35.2	172	51.6	202	71.0
98	101	17.7	121	25.4	141	34.7	171	51.0	201	70.3
100	100	17.4	120	25.0	140	34.3	170	50.4	200	69.6
102	99	17.0	119	24.5	139	33.8	169	49.8	199	68.9
104	98	16.6	118	24.1	138	33.3	168	49.2	198	68.2
106	97	16.3	117	23.7	137	32.8	167	48.6	197	67.5
108	96	15.9	116	23.2	136	32.3	166	48.0	196	66.9
110	95	15.5	115	22.8	135	31.9	165	47.5	195	66.2
112	94	15,2	114	22,4	134	31.4	164	46.9	194	65.
114	93	14,8	113	22,0	133	30.9	163	46.3	193	64.8
116	92	14,5	112	21,6	132	30.4	162	45.7	192	64.
118	91	14,2	111	21,1	131	30.0	161	45.1	191	63.
120	90	13,8	110	20,7	130	29.5	160	44.6	190	62.
122	-	-	-	-	129	29.0	159	44.0	189	62.
124	-	-	-	-	128	28.6	158	43.4	188	61.
126	-	ı	-	ı	127	28.1	157	42.9	187	60.
128	-	-	-	-	126	27.7	156	42.3	186	60.
130	-	-	-	-	125	27.2	155	41.7	185	59.
132	-	-	-	-	124	26.8	154	41.2	184	58.
134	-	-	-	-	123	26.3	153	40.6	183	58.
136	-	-	-	-	122	25.9	152	40.1	182	57.
138	-	-	-	-	121	25.4	151	39.5	181	56.
140	-	-	-	-	120	25.0	150	39.0	180	56.
142	-	-	-	-	119	24.5	149	38.4	179	55.
144	-	-	-	-	118	24.1	148	37.9	178	54.
146	-	-	-	-	117	23.7	147	37.4	177	54.
148	-	-	-	-	116	23.2	146	36.8	176	53.
150	-	-	-	-	115	22.8	145	36.3	175	52.
152	-	-	-	-	114	22.4	144	35.8	174	52.
154	-	-	-	-	113	22.0	143	35.3	173	51.
156	-	-	_	-	112	21.6	142	34.7	172	51.
158	-	-	_	-	111	21.1	141	34.2	171	50.
160	_	-	_	-	110	20.7	140	33.7	170	49.
				h kua c						

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

k_{H,1} for Joist Hanger SAIL 1st blank model - Partial nailing - F1

k _{H,1} for Joist	oist Hanger SAIL 1 st blank model - Partial nailing - F1									
	3	00	3	40	3	80	4	40	5	00
	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ
	8	4	10	6	10	6	12	7	16	8
Α	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1
80	110	13.0	130	17.6	150	22.4	180	31.8	210	46.7
82	109	12.8	129	17.4	149	22.1	179	31.5	209	46.3
84	108	12.6	128	17.1	148	21.9	178	31.2	208	45.9
86	107	12.4	127	16.9	147	21.6	177	30.9	207	45.6
88	106	12.2	126	16.7	146	21.4	176	30.7	206	45.2
90	105	12.0	125	16.5	145	21.1	175	30.4	205	44.9
92	104	11.8	124	16.3	144	20.9	174	30.1	204	44.5
94	103	11.6	123	16.0	143	20.6	173	29.8	203	44.2
96	102	11.4	122	15.8	142	20.4	172	29.6	202	43.8
98	101	11.2	121	15.6	141	20.2	171	29.3	201	43.5
100	100	11.1	120	15.4	140	19.9	170	29.0	200	43.1
102	99	10.9	119	15.2	139	19.7	169	28.8	199	42.8
104	98	10.7	118	15.0	138	19.4	168	28.5	198	42.4
106	97	10.5	117	14.8	137	19.2	167	28.2	197	42.1
108	96	10.3	116	14.6	136	19.0	166	28.0	196	41.7
110	95	10.2	115	14.4	135	18.7	165	27.7	195	41.4
112	-	-	-	-	134	18.5	164	27.4	194	41.1
114	-	-	-	-	133	18.3	163	27.2	193	40.7
116	-	-	-	-	132	18.0	162	26.9	192	40.4
118	-	-	-	-	131	17.8	161	26.6	191	40.1
120	-	-	-	-	130	17.6	160	26.4	190	39.7
122	-	-	-	-	129	17.4	159	26.1	189	39.4
124	-	-	-	-	128	17.1	158	25.9	188	39.1
126	-	-	-	-	127	16.9	157	25.6	187	38.7
128	-	-	-	-	126	16.7	156	25.4	186	38.4
130	-	-	-	-	125	16.5	155	25.1	185	38.1
132	ı	ı	1	ı	124	16.3	154	24.9	184	37.8
134	-	-	-	-	123	16.0	153	24.6	183	37.5
136	-	-	-	-	122	15.8	152	24.4	182	37.1
138	-	-	-	-	121	15.6	151	24.2	181	36.8
140	-	-	-	-	120	15.4	150	23.9	180	36.5
142	-	-	-	-	119	15.2	149	23.7	179	36.2
144	-	-	-	-	118	15.0	148	23.5	178	35.9
146	-	-	-	-	117	14.8	147	23.2	177	35.6
148	-	-	-	-	116	14.6	146	23.0	176	35.3
150	-	-	-	-	115	14.4	145	22.8	175	35.0
152	-	-	-	-	114	14.2	144	22.5	174	34.7
154	-	-	-	-	113	14.0	143	22.3	173	34.4
156	•	-	-	-	112	13.8	142	22.1	172	34.1
158		-	-	-	111	13.6	141	21.9	171	33.8
160	-	-	-	-	110	13.5	140	21.7	170	33.5
In the case of		11. (. 141			1 , 1			1	

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation.

Page 201 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

k_{H,1} for Joist Hanger SAIL 2nd blank model - Full nailing - F1

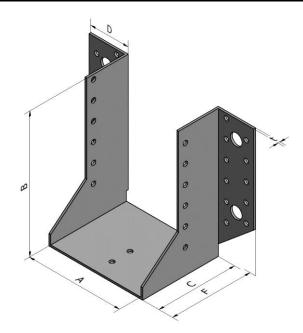
13,1,1 101	Joist Hangel				ik iiiou				500		
	3	00	34	1 0	38	30	44	10	50	00	
	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	
	8	8	10	10	10	10	12	13	16	16	
Α	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1	
38	131	16,6	151	21,8	171	27,1	201	36,6	231	49,1	
40	130	16,4	150	21,6	170	26,8	200	36,2	230	48,7	
42	129	16,2	149	21,3	169	26,5	199	35,9	229	48,3	
44	128	15,9	148	21,1	168	26,3	198	35,6	228	47,9	
46	127	15,7	147	20,8	167	26,0	197	35,3	227	47,6	
48	126	15,5	146	20,5	166	25,7	196	35,0	226	47,2	
50	125	15,3	145	20,3	165	25,5	195	34,7	225	46,8	
52	124	15,1	144	20,0	164	25,2	194	34,4	224	46,4	
54	123	14,9	143	19,8	163	25,0	193	34,1	223	46,0	
56	122	14,7	142	19,5	162	24,7	192	33,8	222	45,7	
58	121	14,4	141	19,3	161	24,4	191	33,5	221	45,3	
60	120	14,2	140	19,0	160	24,2	190	33,2	220	44,9	
62	119	14,0	139	18,8	159	23,9	189	32,9	219	44,5	
64	118	13,8	138	18,5	158	23,6	188	32,6	218	44,1	
66	117	13,6	137	18,3	157	23,4	187	32,3	217	43,8	
68	116	13,4	136	18,0	156	23,1	186	32,0	216	43,4	
70	115	13,2	135	17,8	155	22,9	185	31,7	215	43,0	
72	114	13,0	134	17,5	154	22,6	184	31,4	214	42,6	
74	113	12,8	133	17,3	153	22,3	183	31,1	213	42,3	
76	112	12,5	132	17,0	152	22,1	182	30,8	212	41,9	
78	111	12,3	131	16,8	151	21,8	181	30,5	211	41,5	

k_{H,2} for SAIL - Full or partial nailing - F2

·		Total num	nber of nails	le.			
	Blank	in the	header	k _{H2}			
		Full nailing Partial nailing		Full nailing	Partial nailing		
<u>e</u>	300	16	8	16.4	7.9		
1st blank model	340	20	10	23.8	11.4		
추 고	380	20	10	23.8	11.4		
pla	440	26	14	37.6	21.9		
<u></u>	500	32	16	54.5	25.9		
<u> </u>	300	8	-	7.8	-		
pou	340	10	-	11.4	-		
n An	380	10	-	11.4	-		
2 nd blank model	440	12	-	15.8	-		
2"	500	16	-	26.5	-		

 $n_{j,ef,1}$ and $n_{j,ef,2}$ for SAIL - Full or partial nailing - F1 or F2

			mber of nails the joist		F1	F2		
	Blank	Full	Partial nailing	Full nailing	Partial nailing	Full nailing	Partial nailing	
	nailing			n _{J,ef,1}	n _{J,ef,1}	n _{J,ef,2}	n _{J,ef,2}	
<u>e</u>	300	8	4	3.83	2.59	3.57	2.23	
1st blank model	340	10	6	6.15	4.22	5.54	3.61	
	380	10	6	6.15	4.22	5.54	3.61	
pla	440	13	8	10.13	6.45	8.81	5.38	
18	500	16	8	14.31	7.78	12.2	6.08	
<u></u>	300	10	-	6.15	-	5.54	-	
ρου	340	10	-	6.15	-	5.54	-	
n An	380	12	-	8.76	-	7.69	-	
2 nd blank model	440	14	-	11.52	-	9.93	-	
2	500	18	-	17.08	-	14.46	-	


SAIL joist hangers are warranted for an installation on timber column. The partial nail pattern that applies then is the one described in <u>Annex B3</u> for connection to column and above coefficients, valid for partial nailing, apply.

D36 SAEX Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SAEX	Steel ref 2 or S250GD + ZM310	-

Dimensions

			Dimono	ione [mm1			Holes						
	Blank		Dimens	ions [Header				Joist		
		Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size	
	250	24-80	(250-A)/2	84	41.5	86	1.5	12	Ø5	2	Ø11	7	Ø5	
model	300	24-80	(300-A)/2	84	41.5	86	1.5	18	Ø5	4	Ø11	10	Ø5	
m S	340	24-80	(340-A)/2	84	41.5	86	1.5	22	Ø5	4	Ø11	12	Ø5	
blank	380	24-120	(380-A)/2	84	41.5	86	1.5	22	Ø5	4	Ø11	12	Ø5	
1 st b	440	24-120	(440-A)/2	84	41.5	86	1.5	28	Ø5	4	Ø11	15	Ø5	
	500	24-120	(500-A)/2	84	41.5	86	1.5	34	Ø5	6	Ø11	18	Ø5	
	Permitted deviation	-	-	±1.0	±1.0	±1.0	ı	-	-	-	-	-	-	

 $k_{\text{H,1}}$ for Joist Hanger SAEX - Full nailing - F1

See SAE Joist hanger

 $\mathbf{k}_{H,1}$ for Joist Hanger SAEX - Partial nailing - F1 See

SAE Joist hanger

 $\mathbf{k}_{\text{H,2}}$ for SAEX - Full or partial nailing - F2 See

SAE Joist hanger

$n_{\rm j,ef,1}$ and $n_{\rm j,ef,2}$ for SAEX - Full or partial nailing - F1 or F2 See SAE Joist hanger

SAEX joist hangers are warranted for an installation on timber column. The partial nail pattern that applies then is the one described in <u>Annex B3</u> for connection to column and above coefficients, valid for partial nailing, apply.

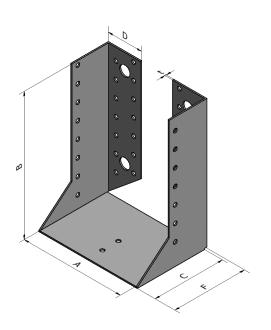
Characteristic capacity for SAEX - with connector screw SSH-S

		Product capacities - Timber to Timber - Large connector screw											
		Fastene	rs		Characteristic capacities - Timber C24								
	Header			Joist		R _{1.k}				R	2.k		
References	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60	
SAEX250	2	SSH10.0x40S	7	CNAS*	7,1	7,2	7,2	7,2	7,0	7,2	7,2	7,2	
SAEX300	4	SSH10.0x40S	10	CNAS*	11,0	11,1	11,1	11,1	11,0	11,1	11,1	11,1	
SAEX340	4	SSH10.0x40S	12	CNAS*	12,4	12,4	12,4	12,4	12,4	12,4	12,4	12,4	
SAEX380	4	SSH10.0x40S	12	CNAS*	12,4	12,4	12,4	12,4	12,4	12,4	12,4	12,4	
SAEX440	4	SSH10.0x40S	15	CNAS*	13,3	13,3	13,3	13,3	13,3	13,3	13,3	13,3	
SAEX500	6	SSH10.0x40S	18	CNAS*	19,4	19,4	19,4	19,4	19,4	19,4	19,4	19,4	

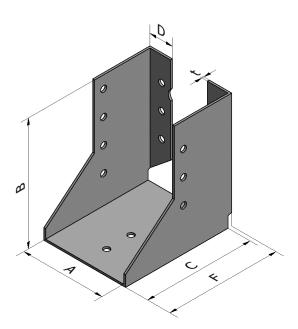
		Product capacities - Timber to Timber - Large connector screw											
		Fastene	rs		Characteristic capacities - Timber C24								
		Header	Joist			R _{3.k}				R _{4.k}			
References	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60	
SAEX250	2	SSH10.0x40S	7	CNAS*	2,0	2,2	2,7	3,2	5,0	5,0	5,0	5,0	
SAEX300	4	SSH10.0x40S	10	CNAS*	3,3	3,5	4,1	4,8	10,0	10,0	10,0	10,0	
SAEX340	4	SSH10.0x40S	12	CNAS*	3,1	3,3	3,8	4,2	10,0	10,0	10,0	10,0	
SAEX380	4	SSH10.0x40S	12	CNAS*	2,7	2,9	3,3	3,7	10,0	10,0	10,0	10,0	
SAEX440	4	SSH10.0x40S	15	CNAS*	2,7	2,8	3,1	3,4	10,0	10,0	10,0	10,0	
SAEX500	6	SSH10.0x40S	18	CNAS*	3,3	3,5	3,8	4,2	15,0	15,0	15,0	15,0	

The user shall verify the transversal tension in timber, which is not included in these capacities.

^{*}Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.


D37 SAIX Joist hanger

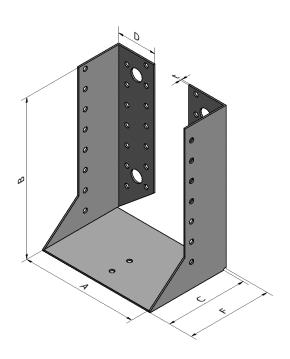
Product Name	Material reference acc. to clause II-1	Alternative Names
SAIX	Steel ref 2 or S250GD + ZM310	-


Dimensions

			Dimono	ione [mm1					Н	oles		
	Blank		Dimens	ions [Header				Joist	
		Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
본 <u></u>	380	80-120	(380-A)/2	84	41.5	87	1.5	22	Ø5	4	Ø11	12	Ø5
1 st blank model	440	80-120	(440-A)/2	84	41.5	87	1.5	28	Ø5	4	Ø11	15	Ø5
1st	500	80-120	(500-A)/2	84	41.5	87	1.5	34	Ø5	6	Ø11	18	Ø5
	250	38-80	(250-A)/2	84	18.5	87	1.5	6	Ø5	•	-	7	Ø5
ode	300	38-80	(300-A)/2	84	18.5	87	1.5	10	Ø5	ı	-	9	Ø5
A E	340	38-80	(340-A)/2	84	18.5	87	1.5	12	Ø5	ı	-	11	Ø5
blank model	380	38-79	(380-A)/2	84	18.5	87	1.5	12	Ø5	1	-	11	Ø5
2 nd k	440	38-79	(440-A)/2	84	18.5	87	1.5	14	Ø5	1	-	15	Ø5
2	500	38-79	(500-A)/2	84	18.5	87	1.5	18	Ø5	-	-	18	Ø5
	Permitted deviation	-	-	±1.0	±1.0	±1.0	ı	-	-	-	-	-	-

1st blank model

2nd blank model

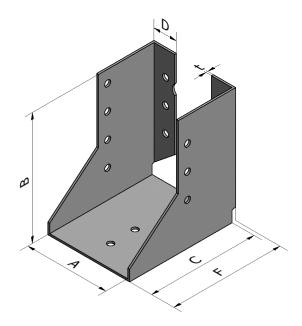


Parameters have to be used with equation in Annex C.

$k_{\text{H,1}}$ for Joist Hanger SAIX - Full nailing - F1

For 1st blank model

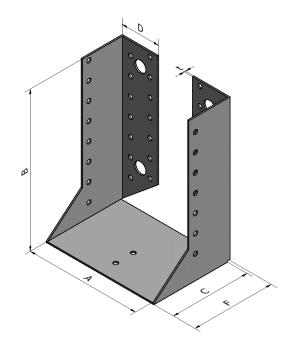
or 1st blank model										
3	80	440		5	00					
n_{H}	n_J	n_H	nJ	n_H	nJ					
22	12	28	15	34	18					
В	k H,1	В	k H,1	В	k H,1					
150	38.9	180	56.1	210	76.4					
149	38.4	179	55.5	209	75.7					
148	37.9	178	54.9	208	75.0					
147	37.4	177	54.3	207	74.2					
146	36.9	176	53.6	206	73.5					
145	36.4	175	53.0	205	72.8					
144	35.9	174	52.4	204	72.1					
143	35.4	173	51.8	203	71.3					
142	34.9	172	51.2	202	70.6					
141	34.4	171	50.6	201	69.9					
140	33.9	170	50.0	200	69.2					
139	33.4	169	49.4	199	68.5					
138	32.9	168	48.8	198	67.8					
137	32.4	167	48.2	197	67.1					
136	31.9	166	47.6	196	66.4					
135	31.4	165	47.0	195	65.7					
134	30.9	164	46.4	194	65.0					
133	30.5	163	45.8	193	64.3					
132	30.0	162	45.2	192	63.6					
131	29.5	161	44.7	191	62.9					
130	29.0	160	44.1	190	62.3					
	130 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131	380 nH nJ 22 12 B kH,1 150 38.9 149 38.4 148 37.9 147 37.4 146 36.9 145 36.4 144 35.9 143 35.4 140 33.9 139 33.4 138 32.9 137 32.4 136 31.9 135 31.4 134 30.9 133 30.5 132 30.0 131 29.5	380 440 nH nJ nH 22 12 28 B kH,1 B 150 38.9 180 149 38.4 179 148 37.9 178 147 37.4 177 146 36.9 176 145 36.4 175 144 35.9 174 143 35.4 173 142 34.9 172 141 34.4 171 140 33.9 170 139 33.4 169 138 32.9 168 137 32.4 167 136 31.9 166 135 31.4 165 134 30.9 164 133 30.5 163 132 30.0 162 131 29.5 161	380 440 n _H n _J n _H n _J 22 12 28 15 B k _{H,1} B k _{H,1} 150 38.9 180 56.1 149 38.4 179 55.5 148 37.9 178 54.9 147 37.4 177 54.3 146 36.9 176 53.6 145 36.4 175 53.0 144 35.9 174 52.4 143 35.4 173 51.8 142 34.9 172 51.2 141 34.4 171 50.6 140 33.9 170 50.0 139 33.4 169 49.4 138 32.9 168 48.8 137 32.4 167 48.2 136 31.9 166 47.6 135 31.4 165 47.0	380 440 5 nH nJ nH nJ nH 22 12 28 15 34 B kH,1 B kH,1 B 150 38.9 180 56.1 210 149 38.4 179 55.5 209 148 37.9 178 54.9 208 147 37.4 177 54.3 207 146 36.9 176 53.6 206 145 36.4 175 53.0 205 144 35.9 174 52.4 204 143 35.4 173 51.8 203 142 34.9 172 51.2 202 141 34.4 171 50.6 201 140 33.9 170 50.0 200 139 33.4 169 49.4 199 138 32.9 168 48.8 198 137 32.4 167 48.2					


In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

Page 207 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

For 2nd blank model

	2	50	3	00	3	40	3	80	4	40	5	00
	пн	nJ	nн	nJ								
	6	4	10	6	12	6	12	6	14	8	18	10
Α	В	k _{H,1}										
38	106	10.0	131	17.0	151	22.1	171	28.0	201	37.4	231	49.5
40	105	9.9	130	16.8	150	21.9	170	27.7	200	37.1	230	49.1
42	104	9.7	129	16.5	149	21.6	169	27.4	199	36.7	229	48.7
44	103	9.5	128	16.3	148	21.3	168	27.1	198	36.4	228	48.3
46	102	9.4	127	16.0	147	21.0	167	26.8	197	36.1	227	47.8
48	101	9.2	126	15.8	146	20.7	166	26.5	196	35.7	226	47.4
50	100	9.0	125	15.6	145	20.5	165	26.2	195	35.4	225	47.0
52	99	8.8	124	15.3	144	20.2	164	25.9	194	35.1	224	46.6
54	98	8.7	123	15.1	143	19.9	163	25.6	193	34.7	223	46.2
56	97	8.5	122	14.8	142	19.7	162	25.3	192	34.4	222	45.8
58	96	8.4	121	14.6	141	19.4	161	25.0	191	34.1	221	45.4
60	95	8.2	120	14.4	140	19.1	160	24.7	190	33.7	220	45.1
62	94	8.0	119	14.1	139	18.8	159	24.4	189	33.4	219	44.7
64	93	7.9	118	13.9	138	18.6	158	24.1	188	33.1	218	44.3
66	92	7.7	117	13.7	137	18.3	157	23.9	187	32.8	217	43.9
68	91	7.5	116	13.4	136	18.0	156	23.6	186	32.4	216	43.5
70	90	7.4	115	13.2	135	17.8	155	23.3	185	32.1	215	43.1
72	89	7.2	114	13.0	134	17.5	154	23.0	184	31.8	214	42.7
74	88	7.1	113	12.8	133	17.3	153	22.7	183	31.4	213	42.3
76	87	6.9	112	12.5	132	17.0	152	22.4	182	31.1	212	41.9
78	86	6.7	111	12.3	131	16.7	151	22.1	181	30.8	211	41.5
80	85	6.6	110	12.1	130	16.5	-	-	-	-	-	-


In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

$k_{\text{H},1} \, \text{for Joist Hanger SAIX}$ - Partial nailing - F1

For 1st blank model

-or 1st blank model											
	3	80	440		5	00					
	nн	nJ	nн	nJ	nн	nJ					
	22	12	28	15	34	18					
Α	В	$k_{H,1}$	В	k _{H,1}	В	k _{H,1}					
80	150	23.8	180	32.7	210	47.8					
82	149	23.5	179	32.3	209	47.4					
84	148	23.2	178	32.0	208	47.0					
86	147	22.9	177	31.6	207	46.5					
88	146	22.6	176	31.3	206	46.1					
90	145	22.3	175	30.9	205	45.7					
92	144	22.0	174	30.6	204	45.2					
94	143	21.7	173	30.3	203	44.8					
96	142	21.4	172	29.9	202	44.4					
98	141	21.1	171	29.6	201	43.9					
100	140	20.8	170	29.3	200	43.5					
102	139	20.5	169	28.9	199	43.1					
104	138	20.2	168	28.6	198	42.7					
106	137	19.9	167	28.3	197	42.2					
108	136	19.6	166	27.9	196	41.8					
110	135	19.3	165	27.6	195	41.4					
112	134	19.1	164	27.3	194	41.0					
114	133	18.8	163	26.9	193	40.5					
116	132	18.5	162	26.6	192	40.1					
118	131	18.2	161	26.3	191	39.7					
120	130	17.9	160	26.0	190	39.3					

No partial nailing for 2nd blank model.

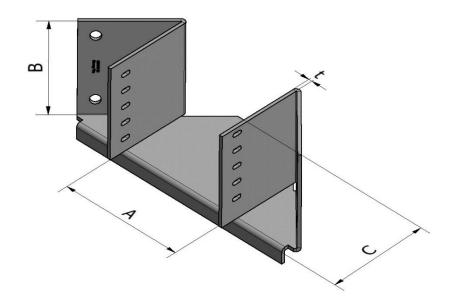
 $k_{H,2}$ for SAIX - Full or partial nailing - F2

		Total nur	mber of nails		k H2				
	Blank	in the	e header	NH2					
		Full nailing	Partial nailing	Full nai	iling Partial nailing				
¥ ₹	380	22	12	27.4	15.4				
1 st blank model	440	28	14	41.8	19.9				
1 st	500	34	18	59.3	32.1				
_	250	6	-	4.7	-				
ope	300	10	•	11.1	-				
Ĕ	340	12	•	15.4	-				
lan	380	12	•	15.4	-				
2 nd blank model	440	14	-	20.3	-				
	500	18	-	32.1	-				

Page 209 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

 $n_{j,ef,1}$ and $n_{j,ef,2}$ for SAIX - Full or partial nailing - F1 or F2

,,- .,.	,,,_		nber of nails	110112					
					F1		F2		
		in ti	he joist						
	Blank	Full nailing	Partial nailing	Full nailing	Partial nailing	Full nailing	Partial nailing		
			•	n _{J,ef,1}	n _{J,ef,1}	n _{J,ef,2}	n _{J,ef,2}		
본 등	380	12	6	8.76	4.91	7.69	4.00		
1st blank model	440	15	8	12.92	7.59	11.06	5.99		
1 st	500	18	10	17.08	10.69	14.46	8.21		
_	250	7	4	2.84	2.13	2.69	1.92		
opc	300	9	6	4.94	3.51	4.52	3.13		
Ĕ	340	11	6	7.43	5.12	6.6	4.12		
lan	380	11	6	7.43	4.56	6.6	3.81		
2 nd blank model	440	15	8	12.92	7.96	11.06	6.16		
(1)	500	18	10	17.08	10.69	14.46	8.21		


SAIX joist hangers are warranted for an installation on timber column. The partial nail pattern that applies then is the one described in <u>Annex B3</u> for connection to column and above coefficients, valid for partial nailing, apply.

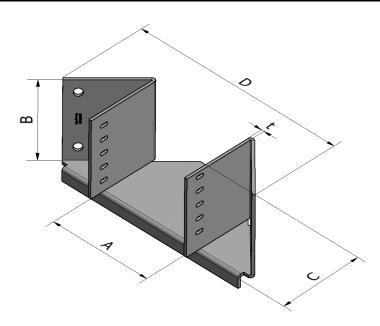
D38 SAMI38 Joist hanger

Product Material reference acc. Name to clause II-1		Alternative Names
SAMI38	Steel ref 1 - Steel ref 2	-

Dimensions

		Dimension	e [mm]		Fasteners					
Model		Dilliension	is [iiiiii]		J	oist	Header			
	Α	В	С	t	Qty	Туре	Qty	Type		
SAMI38	38	105,8	259	2.5	4	CSA5.0x40	2	Ø10		

Characteristic capacity for SAMI38 - Timber to rigid support


		Fasteners	Characteristic				
Model		Joist	He	ader	capacities [kN]		
	Qty	Туре	Qty	Туре	R _{1,k}	R _{2,k}	
SAMI38	4	CSA5.0x40	2	Ø10	10,1	3,8	

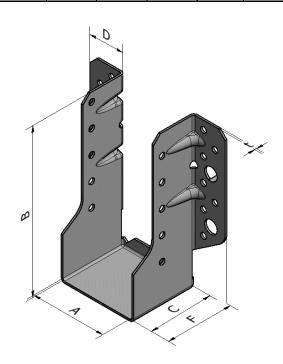
D39 SAMI/4X Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SAMI/4X	Steel ref 1 - Steel ref 2	-

Dimensions

		Din	nensions [m	Holes					
Blank			nensions [ii	Jo	ist	Header			
	Α	В	С	D	t	Qty Size		Qty	Size
SAMI/4X	76-150	116	121	310	4	10	Ø5x12	4	Ø12
Permitted deviation	-	-	±1.0	±1.0	-	-	-	-	-

Characteristic capacity for SAMI/4X - F1 - Timber to rigid support


Model		Fasteners	Characteristic capacity [kN] - C24		
	n _H	nJ	R _{1,k}		
SAMI/4X	4 Ø10	10 CNA4.0x35	31.3		

D40 SBE Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SBE	Steel ref 1 - Steel ref 2	-

Dimensions

		Dim	onciona	[mm]	Holes								
Blank		Dimensions [mm]							Header				
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size	
230	32-65	(230-A)/2	52.5	29	54	1.5	12	Ø5	2	Ø11	6	Ø5	
260	32-71	(260-A)/2	52.5	29	54	1.5	12	Ø5	2	Ø11	8	Ø5	
320	32-81	(320-A)/2	52.5	29	54	1.5	14	Ø5	4	Ø11	10	Ø5	
380	32-101	(380-A)/2	52.5	29	54	1.5	18	Ø5	4	Ø11	12	Ø5	
440	32-121	(440-A)/2	52.5	29	54	1.5	22	Ø5	4	Ø11	14	Ø5	
500	32-141	(500-A)/2	52.5	29	54	1.5	26	Ø5	4	Ø11	16	Ø5	
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-	

Page 213 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

Parameters have to be used with equation in Annex C

k_{H,1} for Joist Hanger SBE - Full nailing - F1

K _{H,1} 101 30	230 260				320 380			90	4	40	500	
	nH					l	nH	Ì	nH		nH	
	12	nJ 6	nH 12	nJ 8	nH 14	nJ 10	18	nJ 12	22	nJ 14	26	nJ 16
	B	kH,1	<u> 12</u> В	kH,1	B	kH,1	В	kH,1	B	kH,1	B	kH,1
A 22										-		
32	99	19.4	114	24.1	144	37.2	174	56.1	204	78.9	234	104.4
36	97	18.6	112	23.3	142	36.3	172	54.9	202	77.5	232	102.7
40	95	17.8	110	22.5	140	35.4	170	53.7	200	76.1	230	101.1
44	93	17.0	108	21.7	138	34.4	168	52.5	198	74.6	228	99.4
48	91	16.3	106	20.9	136	33.5	166	51.4	196	73.2	226	97.8
52	89	15.5	104	20.1	134	32.6	164	50.2	194	71.8	224	96.2
56	87	14.8	102	19.4	132	31.7	162	49.0	192	70.4	222	94.6
60	85	14.0	100	18.6	130	30.8	160	47.9	190	69.0	220	92.9
64	83	13.3	98	17.8	128	29.9	158	46.8	188	67.6	218	91.3
65	83	13.1	98	17.7	128	29.6	158	46.5	188	67.3	218	90.9
68	-	-	96	17.1	126	29.0	156	45.6	186	66.3	216	89.7
71	-	-	95	16.5	125	28.3	155	44.8	185	65.2	215	88.5
75	-	-	-	-	123	27.4	153	43.6	183	63.9	213	86.9
76	-	-	-	-	122	27.2	152	43.4	182	63.5	212	86.5
80	-	-	-	-	120	26.3	150	42.2	180	62.2	210	85.0
81	-	-	-	-	120	26.1	150	42.0	180	61.8	210	84.6
85	-	-	-	-	-	-	148	40.9	178	60.5	208	83.0
89	-	-	-	-	-	-	146	39.8	176	59.1	206	81.4
93	-	-	-	-	-	-	144	38.7	174	57.8	204	79.9
97	-	-	-	-	-	-	142	37.6	172	56.5	202	78.3
100	-	-	-	-	-	-	140	36.774	170	55.5	200	77.2
101	-	-	-	-	-	-	139.5	36.507	170	55.1	200	76.8
105	-	-	-	-	-	-	-	-	168	53.8	198	75.2
109	-	-	-	-	-	-	-	-	166	52.5	196	73.7
113	-	-	-	-	-	-	-	-	164	51.2	194	72.2
117	-	-	-	-	-	-	-	-	162	50.0	192	70.7
121	-	-	-	-	-	-	-	-	160	48.7	190	69.2
125	-	-	-	-	-	-	-	-	-	-	188	67.7
129	-	-	-	-	-	-	-	-	-	-	186	66.3
133	-	-	-	-	-	-	-	-	-	-	184	64.8
137	-	-	-	-	-	-	-	-	-	-	182	63.3
141	-	-	-	-	-	-	-	-	-	-	180	61.9

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

Page 214 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

 $k_{H,1}$ for Joist Hanger SBE - Partial nailing - F1

KH,1 IOI JOISI	r Joist Hanger SBE - Partial na						1		T			
		230	2	60	3	20	3	80	44	0	50	0
	nΗ	nJ	nΗ	nJ	nΗ	nJ	nΗ	nJ	nΗ	nJ	nΗ	nJ
	8	4	8	4	10	6	12	6	14	8	16	8
Α	В	kH,1	В	kH,1	В	kH,1	В	kH,1	В	kH,1	Н	kH,1
32	99	14.0	114	18.0	144	27.0	174	39.6	204.0	52.4	234	69.1
36	97	13.4	112	17.4	142	26.3	172	38.7	202.0	51.5	232	68.0
40	95	12.8	110	16.8	140	25.6	170	37.9	200.0	50.6	230	66.9
44	93	12.3	108	16.2	138	24.9	168	37.0	198.0	49.6	228	65.9
48	91	11.7	106	15.6	136	24.2	166	36.2	196.0	48.7	226	64.8
52	89	11.2	104	15.1	134	23.5	164	35.4	194.0	47.8	224	63.7
56	87	10.7	102	14.5	132	22.9	162	34.6	192.0	46.8	222.0	62.7
60	85	10.1	100	13.9	130	22.2	160	33.8	190.0	45.9	220	61.6
64	83	9.6	98	13.4	128	21.5	158	33.0	188.0	45.0	218.0	60.6
65	83	9.5	98	13.2	128	21.4	158	32.8	187.5	44.8	217.5	60.3
68	-		96	12.8	126	20.9	156	32.2	186.0	44.1	216	59.5
71	-		95	12.4	125	20.4	155	31.6	184.5	43.4	215	58.8
75	-	-	-	-	123	19.7	153	30.8	182.5	42.5	212.5	57.7
76	-	-	-	-	122	19.6	152	30.6	182.0	42.3	212.0	57.5
80	-	-	-	-	120	18.9	150	29.8	180.0	41.4	210.0	56.4
81	-	-	-	-	120	18.8	150	29.6	179.5	41.2	209.5	56.2
85	-	-	-	-	-	-	148	28.8	177.5	40.3	207.5	55.1
89	-	-	-	-	-	-	146	28.0	175.5	39.4	206	54.1
93	-	-	-	-	-	-	144	27.3	173.5	38.5	203.5	53.1
97	-	-	-	-	-	-	142	26.5	171.5	37.6	201.5	52.1
100	-	-	-	-	-	-	140	25.946	170.0	37.0	200.0	51.3
101	-	-	-	-	-	-	139.5	25.759	169.5	36.8	199.5	51.1
105	-	-	-	-	-	-	-	-	167.5	35.9	197.5	50.1
109	-	-	-	-	-	-	-	-	165.5	35.1	196	49.1
113	-	-	-	-	-	-	-	-	163.5	34.2	194	48.1
117	-	-	-	-	-	-	-	-	161.5	33.4	192	47.1
121	-	-	-	-	-	-	-	-	159.5	32.6	190	46.2
125	-	-	-	-	-	-	-	-	-	-	188	45.2
129	-	-	-	-	-	-	-	-	-	-	186	44.2
133	-	-	-	-	-	-	-	-	-	-	184	43.3
137	-	-	-	-	-	-	-	-	-	-	182	42.3
141	-	-	-	-	-	-	-	-	-	-	180	41.4
L					·							

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation.

Page 215 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

 $k_{\text{H},2}$ for SBE - Full or partial nailing - F2

	Total num	nber of nails	k _{H2}				
Blank	in the	header					
	Full nailing	Partial nailing	Full nailing	Partial nailing			
230	12	8	15.3	10.3			
260	12	8	15.3	10.3			
320	14	10	19.2	15.2			
380	18	12	28.9	20.9			
440	22	14	40.4	27.6			
500	26	16	56.1	35.2			

 $n_{j,ef,1}$, $n_{j,ef,2}$ and $I_{p,fl}$ for SBE - Full or partial nailing - F1 or F2 or F3

	Total numb	er of nails	E4		E ′	,		F3		
	in the	joist	F 1	F1		F2		гэ		
Blank	Full nailing	Partial nailing	Full nailing			Partial nailing	Full nailing	Partial nailing		
	naming	Hailing	n _{J,ef,1}	n _{J,ef,1}	n _{J,ef,2}	n _{J,ef,2}	I _{p,fl}	$I_{p,fl}$		
230	6	4	2.71	2.66	2.44	2.22	2485	1667		
260	8	4	4.95	2.19	4.41	1.4	2933	2000		
320	10	6	7.74	5.36	6.62	4.04	5086	4000		
380	12	6	10.7	5.36	8.91	4.59	8156	7000		
440	14	8	13.7	8	11.21	6.59	15018	11200		
500	16	8	16	8	13.48	6.23	25108	16800		

Characteristic capacity for SBE - with connector screw SSH/SSF without pre drilling

	Product capacities - Timber to Timber - Large connector screw												
References	Fasteners				Characteristic capacities - Timber C24								
	Header		Joist			R ₁	.k	_	R _{2.k}				
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60	
SBE230	2	SSH10.0x40 ⁽¹⁾	6	CNA*	6,5	6,8	7,2	7,2	6,8	6,9	7,2	7,2	
	2	SSH10.0x50 ⁽¹⁾	6	CNA*	7.8	7.8	8.6	8.9	7.8	8.3	8.9	9.1	
	2	SSH10.0x100	6	CNA*	7.8	8.6	9.9	10.1	7.8	8.7	10.2	10.4	
SBE260	2	SSH10.0x40 ⁽¹⁾	8	CNA*	7,2	7,2	7,2	7,2	7,2	7,2	7,2	7,2	
	2	SSH10.0x50 ⁽¹⁾	8	CNA*	9.0	9.3	9.4	9.4	9.1	9.3	9.4	9.4	
	2	SSH10.0x100	8	CNA*	10.2	10.6	10.9	10.9	10.2	10.6	10.9	10.9	
SBE320	4	SSH10.0x40 ⁽¹⁾	10	CNA*	11.2	11.4	11.4	11.4	11.3	11.4	11.4	11.4	
	4	SSH10.0x50 ⁽¹⁾	10	CNA*	13.0	13.8	14.8	14.9	13.1	14.1	14.9	14.9	
	4	SSH10.0x100	10	CNA*	13.1	14.4	16.7	17.1	13.1	14.4	16.9	17.2	
SBE380	4	SSH10.0x40 ⁽¹⁾	12	CNA*	12,8	12,8	12,8	12,8	12,8	12,8	12,8	12,8	
	4	SSH10.0x50 ⁽¹⁾	12	CNA*	15.4	16.2	16.8	16.8	15.6	16.4	16.8	16.8	
	4	SSH10.0x100	12	CNA*	15.7	17.3	19.3	19.4	15.7	17.3	19.3	19.4	
SBE440	4	SSH10.0x40 ⁽¹⁾	14	CNA*	13,5	13,5	13,5	13,5	13,5	13,5	13,5	13,5	
	4	SSH10.0x50 ⁽¹⁾	14	CNA*	17.2	17.6	17.6	17.6	17.3	17.6	17.6	17.6	
	4	SSH10.0x100	14	CNA*	18.3	19.8	20.4	20.4	18.3	19.9	20.4	20.4	
SBE500	4	SSH10.0x40 ⁽¹⁾	16	CNA*	13,5	13,5	13,5	13,5	13,5	13,5	13,5	13,5	
	4	SSH10.0x50 ⁽¹⁾	16	CNA*	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	
	4	SSH10.0x100	16	CNA*	20.2	20.4	20.4	20.4	20.2	20.4	20.4	20.4	

References	Product capacities - Timber to Timber - Large connector screw												
	Fasteners				Characteristic capacities - Timber C24								
	Header		Joist			R ₃	.k		R _{4,k}				
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60	
SBE230	2	SSH10.0x40 ⁽¹⁾	6	CNA*	1,5	1,7	2,2	2,6	5,0	5,0	5,0	5,0	
	2	SSH10.0x50 ⁽¹⁾	6	CNA*	2.2	3.8	2.9	3.4	5,0	5,0	5,0	5,0	
	2	SSH10.0x100	6	CNA*	2.5	3.8	3.3	4.0	5,0	5,0	5,0	5,0	
SBE260	2	SSH10.0x40 ⁽¹⁾	8	CNA*	1,3	1,5	1,9	2,3	5,0	5,0	5,0	5,0	
	2	SSH10.0x50 ⁽¹⁾	8	CNA*	1.7	1.9	2.5	3.0	5,0	5,0	5,0	5,0	
	2	SSH10.0x100	8	CNA*	2.0	2.3	2.8	3.5	5,0	5,0	5,0	5,0	
SBE320	4	SSH10.0x40 ⁽¹⁾	10	CNA*	2	2.2	2.7	3.3	10,0	10,0	10,0	10,0	
	4	SSH10.0x50 ⁽¹⁾	10	CNA*	2.7	3.0	3.6	4.3	10,0	10,0	10,0	10,0	
	4	SSH10.0x100	10	CNA*	3.1	3.4	4.2	5.0	10,0	10,0	10,0	10,0	
SBE380	4	SSH10.0x40 ⁽¹⁾	12	CNA*	1,9	2,0	2,4	2,8	10,0	10,0	10,0	10,0	
	4	SSH10.0x50 ⁽¹⁾	12	CNA*	2.5	2.7	3.2	3.7	10,0	10,0	10,0	10,0	
	4	SSH10.0x100	12	CNA*	2.9	3.1	3.7	4.3	10,0	10,0	10,0	10,0	
SBE440	4	SSH10.0x40 ⁽¹⁾	14	CNA*	1,9	2,0	2,3	2,6	10,0	10,0	10,0	10,0	
	4	SSH10.0x50 ⁽¹⁾	14	CNA*	2.4	2.6	2.9	3.3	10,0	10,0	10,0	10,0	
	4	SSH10.0x100	14	CNA*	2.8	3.0	3.4	3.9	10,0	10,0	10,0	10,0	
SBE500	4	SSH10.0x40 ⁽¹⁾	16	CNA*	1,5	1,7	1,9	2,1	10,0	10,0	10,0	10,0	
	4	SSH10.0x50 ⁽¹⁾	16	CNA*	2.0	2.2	2.5	2.8	10,0	10,0	10,0	10,0	
	4	SSH10.0x100	16	CNA*	2.3	2.5	2.9	3.3	10,0	10,0	10,0	10,0	

⁽¹⁾SSH can be replaced by SSF

The user shall verify the transversal tension in timber, which is not included in these capacities.

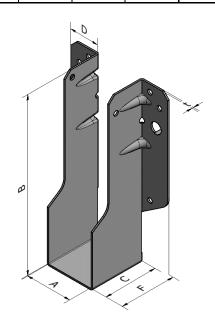
There is no improvement of the characteristic values between SSH12.0x60 and SSH12.0x100 without pre drilling.

^{*}Refer to *Characteristic Capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

Page 217 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

Characteristic capacity for SBE - with connector screw SSH/SSF with pre drilling

			Produ	ct capa	cities - Tir	nber to T	imber - L	arge con	nector s	crew				
		Fasteners	S			Characteristic capacities - Timber C24								
References	Header		Joist		R _{1.k}				R _{2.k}					
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60		
SBE230	2	SSH10.0x50 ⁽¹⁾	6	CNA*	7.8	7.8	8.6	8.9	7.8	8.3	8.9	9.1		
SBE230	2	SSH10.0x100	6	CNA*	7.8	8.6	10.5	11.1	7.8	8.7	10.5	11.4		
SBE260	2	SSH10.0x50 ⁽¹⁾	8	CNA*	9.0	9.3	9.4	9.4	9.1	9.3	9.4	9.4		
SBE260	2	SSH10.0x100	8	CNA*	10.5	11.5	12.9	13.2	10.5	11.5	12.9	13.2		
SBE320	4	SSH10.0x50 ⁽¹⁾	10	CNA*	13.0	13.8	14.8	14.9	13.1	14.1	14.9	14.9		
SBE320	4	SSH10.0x100	10	CNA*	13.1	14.4	17.6	18.9	13.1	14.4	17.6	18.9		
SBE380	4	SSH10.0x50 ⁽¹⁾	12	CNA*	15.4	16.2	16.8	16.8	15.6	16.4	16.8	16.8		
SBE380	4	SSH10.0x100	12	CNA*	15.7	17.3	21.1	22.5	15.7	17.3	21.1	22.7		
SBE440	4	SSH10.0x50 ⁽¹⁾	14	CNA*	17.2	17.6	17.6	17.6	17.3	17.6	17.6	17.6		
SBE440	4	SSH10.0x100	14	CNA*	18.3	20.2	24.2	25.0	18.3	20.2	24.4	25.1		
SBE500	4	SSH10.0x50 ⁽¹⁾	16	CNA*	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6		
SBE500	4	SSH10.0x100	16	CNA*	20.9	23.1	25.4	25.4	20.9	23.1	25.4	25.4		


		Product capacities - Timber to Timber - Large connector screw											
		Fasteners	S		Characteristic capacities - Timber C24								
References		Header	Joist			R ₃	3.k		R _{4.k}				
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60	
SBE230	2	SSH10.0x50 ⁽¹⁾	6	CNA*	2.2	3.8	2.9	3.4	5,0	5,0	5,0	5,0	
SBE230	2	SSH10.0x100	6	CNA*	2.5	3.8	4.1	5.0	5,0	5,0	5,0	5,0	
SBE260	2	SSH10.0x50 ⁽¹⁾	8	CNA*	1.7	1.9	2.5	3.0	5,0	5,0	5,0	5,0	
SBE260	2	SSH10.0x100	8	CNA*	2.5	2.8	3.5	4.3	5,0	5,0	5,0	5,0	
SBE320	4	SSH10.0x50 ⁽¹⁾	10	CNA*	2.7	3.0	3.6	4.3	10,0	10,0	10,0	10,0	
SBE320	4	SSH10.0x100	10	CNA*	3.2	4.0	5.2	6.2	10,0	10,0	10,0	10,0	
SBE380	4	SSH10.0x50 ⁽¹⁾	12	CNA*	2.5	2.7	3.2	3.7	10,0	10,0	10,0	10,0	
SBE380	4	SSH10.0x100	12	CNA*	3.5	3.9	4.5	5.3	10,0	10,0	10,0	10,0	
SBE440	4	SSH10.0x50 ⁽¹⁾	14	CNA*	2.4	2.6	2.9	3.3	10,0	10,0	10,0	10,0	
SBE440	4	SSH10.0x100	14	CNA*	3.5	3.7	4.3	4.8	10,0	10,0	10,0	10,0	
SBE500	4	SSH10.0x50 ⁽¹⁾	16	CNA*	2.0	2.2	2.5	2.8	10,0	10,0	10,0	10,0	
SBE500	4	SSH10.0x100	16	CNA*	2.9	3.1	3.6	4.1	10.0	10.0	10.0	10.0	

D41 SBE45/168/TF Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SBE45/168/TF	Steel ref 1 - Steel ref 2	-

Dimensions

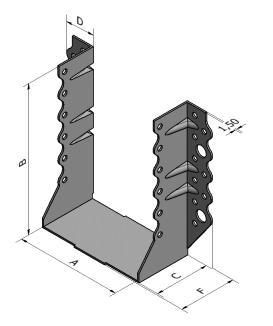
			Dimensio	one Imm	1		Holes						
Blank			Dillielisid	יווווון פווכ	J		Header				Joist		
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size	
SBE45/168/TF	45	168	52.5	29	54	1.5	6	Ø5	2	Ø11	2	Ø5	
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	1	-	

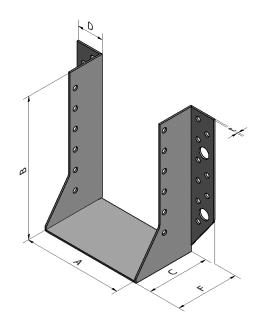
Characteristic capacity for SBE45/168/TF - Full nailing - F1 - timber to timber

Model	Fasteners -	CNA4.0x35	Characteristic capacity [kN] - C24					
	n _H	nJ	R _{1,k}	R _{2,k}				
SBE45/165/TF	6	2	6.0	2.7				

To change the timber density instead of using the kdens factor use in this specific case:

Timber class	C18	C20	C22	C24
Factor	0.83	0.89	0.94	1.00


D42 SBG/SLE Joist hanger


Product Name	Material reference acc. to clause II-1	Alternative Names
SBG	Steel ref 1 - Steel ref 2	-
SLE	Steel ref 1 - Steel ref 2	-

Dimensions

	Dimensions [mm]									Holes							
	Blank		Dimensi	ons [minj				Hea	der		Jo	ist				
		Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size				
	230	38-52	(230-A)/2	51.5	27	55	1.5	8	Ø5	2	Ø11	6	Ø5				
	260	38-64	(260-A)/2	51.5	27	55	1.5	12	Ø5	2	Ø11	6	Ø5				
SBG	320	38-80	(320-A)/2	51.5	27	55	1.5	16	Ø5	2	Ø11	10	Ø5				
SDG	380	38-100	(380-A)/2	51.5	27	55	1.5	18	Ø5	4	Ø11	12	Ø5				
	440	38-120	(440-A)/2	51.5	27	55	1.5	22	Ø5	4	Ø11	14	Ø5				
	500	38-140	(500-A)/2	51.5	27	55	1.5	26	Ø5	4	Ø11	16	Ø5				
	230	38-76	(230-A)/2	60	27	64	2	8	Ø5	2	Ø11	6	Ø5				
	260	38-76	(260-A)/2	60	27	64	2	12	Ø5	2	Ø11	6	Ø5				
SLE	320	38-100	(320-A)/2	60	27	64	2	16	Ø5	2	Ø11	10	Ø5				
SLE	380	38-106	(380-A)/2	60	27	64	2	18	Ø5	4	Ø11	12	Ø5				
	440	38-140	(440-A)/2	60	27	64	2	22	Ø5	4	Ø11	14	Ø5				
	500	38-140	(500-A)/2	60	27	64	2	26	Ø5	4	Ø11	16	Ø5				
				Spe	cific	sizes											
	300	100	100	60	27	64	2	14	Ø5	2	Ø11	8	Ø5				
SLE	340	120	110	60	27	64	2	12	Ø5	2	Ø11	8	Ø5				
	380	140	120	60	27	64	2	16	Ø5	2	Ø11	10	Ø5				
,	Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	1	-				

SBG SLE

Parameters have to be used with equation in Annex C

 $k_{H,1}$ for Joist Hanger SBG-SLE - Full nailing - F1

		230	2	60	3	20	3	80	4	40		500
	пн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ
	8	6	12	6	16	10	18	12	22	14	26	16
Α	В	k _{H,1}	В	$k_{H,1}$	В	$k_{H,1}$	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}
36	97	15.7	112	24.8	142	39.1	172	56.4	202	78.3	232	105.8
40	95	15.1	110	23.9	140	38.1	170	55.2	200	76.9	230	104.1
44	93	14.4	108	23.1	138	37.0	168	54.0	198	75.4	228	102.4
48	91	13.8	106	22.2	136	35.9	166	52.8	196	74.0	226	100.7
52	89	13.2	104	21.4	134	34.9	164	51.6	194	72.6	224	99.0
56	87	12.5	102	20.6	132	33.8	162	50.4	192	71.1	222	97.4
60	85	11.9	100	19.7	130	32.8	160	49.2	190	69.7	220	95.7
64	83	11.3	98	18.9	128	31.8	158	48.0	188	68.3	218	94.0
68	81	10.7	96	18.1	126	30.8	156	46.9	186	66.9	216	92.4
72	79	10.1	94	17.4	124	29.8	154	45.7	184	65.5	214	90.7
76	77	9.6	92	16.6	122	28.8	152	44.5	182	64.1	212	89.1
80					120	27.8	150	43.4	180	62.7	210	87.5
90					115	25.4	145	40.5	175	59.3	205	83.4
100					110	23.0	140	37.7	170	56.0	200	79.4
110									165	52.7	195	75.5
120									160	49.4	190	71.6
130									155	46.3	185	67.8
140									150	43,2	180	64.0

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

For SBG: when t-t2 < 4 x d, don't use the holes in the joist, they are opposed. Then, the number of nails in the joist needs to be reduced in accordance with Eurocode 5, clause 8.3.1.1 (7) $k_{H,1}$ value can be used both for column and beam

Page 221 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07

k_{H,1} for Joist Hanger SBG-SLE - Partial nailing - F1

		230	2	60	3	20	3	80	44	0	50	0
	n _H	nJ	n_H	nJ	n_H	nJ						
	6	3	8	4	10	6	12	6	14	8	16	8
Α	В	k H,1	В	k H,1	Η	k _{H,1}						
36	97	15.1	112	19.0	142	27.9	172	39.9	202	54.1	232	70.3
40	95	14.6	110	18.3	140	27.2	170	39.1	200	53.1	230	69.1
44	93	14.0	108	17.7	138	26.4	168	38.2	198	52.1	228	68.0
48	91	13.4	106	17.0	136	25.7	166	37.4	196	51.1	226	66.9
52	89	12.9	104	16.4	134	25.0	164	36.5	194	50.1	224	65.8
56	87	12.3	102	15.8	132	24.3	162	35.7	192	49.2	222	64.7
60	85	11.8	100	15.2	130	23.6	160	34.8	190	48.2	220	63.7
64	83	11.3	98	14.6	128	22.8	158	34.0	188	47.2	218	62.6
68	81	10.7	96	14.0	126	22.1	156	33.2	186	46.3	216	61.5
72	79	10.2	94	13.4	124	21.5	154	32.4	184	45.3	214	60.4
76	77	9.7	92	12.8	122	20.8	152	31.5	182	44.4	212	59.3
80					120	20.1	150	30.7	180	43.5	210	58.3
90					115	18.4	145	28.7	175	41.1	205	55.6
100					110	16.8	140	26.8	170	38.8	200	53.0
110									165	36.6	195	50.5
120									160	34.4	190	47.9
130									155	32.3	185	45.4
140									150	30.2	180	43.0

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

For SBG: when t-t2 < 4 x d, don't use the holes in the joist, they are opposed. Then, the number of nails in the joist needs to be reduced in accordance with Eurocode 5, clause 8.3.1.1 (7) $k_{H,1}$ value can be used both for column and beam

k_{H,2} for SBG-SLE - Full or partial nailing - F2

Blank		nber of nails header	k _{H2}				
Biank	Full nailing	Partial nailing	Full nailing	Partial nailing			
230	8	6	9.6	6.7			
260	12	8	15.9	10.7			
320	16	10	25.6	15.7			
380	18	12	29.9	21.7			
440	22	14	44.3	28.6			
500	26	16	58.1	36.4			

k_{H,2} value can be used both for column and beam

 $k_{\text{H},1}$ and $k_{\text{H},2}$ for specific sizes of SLE

Characteristic capacities for SBG-SLE - with connector screw SSH/SSF without predrilling

		Product capacities - Timber to Timber - Large connector screw												
		Fastener						stic capa			24			
Blank		Header	J	oist		R	1.k		R _{2.k}					
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60		
	2	SSH10.0x40 ⁽¹⁾	6	CNA*	6.65	6.86	7.16	7.21	6.49	6.75	7.13	7.21		
SLE230	2	SSH10.0x50 ⁽¹⁾	6	CNA*	7.8	8.5	9.0	9.2	7.8	8.3	8.9	9.1		
	2	SSH10.0x100	6	CNA*	7.8	8.6	10.1	10.3	7.8	8.7	9.9	10.1		
	2	SSH10.0x40 ⁽¹⁾	6	CNA*	6.65	6.86	7.16	7.21	6.73	6.92	7.17	7.21		
SLE260	2	SSH10.0x50 ⁽¹⁾	6	CNA*	7.8	8.5	9.0	9.2	7.8	8.6	9.1	9.2		
	2	SSH10.0x100	6	CNA*	7.8	8.6	10.1	10.3	7.8	8.7	10.2	10.4		
	2	SSH10.0x40 ⁽¹⁾	10	CNA*	7.21	7.21	7.21	7.21	7.21	7.21	7.21	7.21		
SLE320	2	SSH10.0x50 ⁽¹⁾	10	CNA*	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4		
	2	SSH10.0x100	10	CNA*	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9		
	4	SSH10.0x40 ⁽¹⁾	12	CNA*	12.70	12.70	12.70	12.70	12.70	12.70	12.70	12.70		
SLE380	4	SSH10.0x50 ⁽¹⁾	12	CNA*	15.6	16.3	16.6	16.6	15.7	16.4	16.6	16.6		
	4	SSH10.0x100	12	CNA*	15.7	17.3	19.1	19.2	15.7	17.3	19.2	19.2		
	4	SSH10.0x40 ⁽¹⁾	14	CNA*	12.70	12.70	12.70	12.70	12.70	12.70	12.70	12.70		
SLE440	4	SSH10.0x50 ⁽¹⁾	14	CNA*	16.6	16.6	16.6	16.6	16.6	16.6	16.6	16.6		
	4	SSH10.0x100	14	CNA*	18.3	19.1	19.3	19.3	18.3	19.1	19.3	19.3		
	4	SSH10.0x40 ⁽¹⁾	16	CNA*	13.38	13.38	13.38	13.38	13.38	13.38	13.38	13.38		
SLE500	4	SSH10.0x50 ⁽¹⁾	16	CNA*	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5		
	4	SSH10.0x100	16	CNA*	20.1	20.3	20.3	20.3	20.1	20.3	20.3	20.3		

			Produ	ct capac	cities - Ti	mber to T	Timber - I	_arge cor	nnector s	crew			
		Fastener	s	_		С	haracteri	stic capa	cities - T	imber C2	24		
Blank		Header	J	oist		R _{3.k}				R _{4.k}			
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60	
	2	SSH10.0x40 ⁽¹⁾	6	CNA*	2.10	2.20	2.72	3.23	5.0	5.0	5.0	5.0	
SLE230	2	SSH10.0x50 ⁽¹⁾	6	CNA*	2.5	2.9	3.6	4.2	5.0	5.0	5.0	5.0	
	2	SSH10.0x100	6	CNA*	2.5	2.9	4.1	4.9	5.0	5.0	5.0	5.0	
	2	SSH10.0x40 ⁽¹⁾	6	CNA*	1.44	1.51	1.90	2.31	5.0	5.0	5.0	5.0	
SLE260	2	SSH10.0x50 ⁽¹⁾	6	CNA*	1.9	2.0	2.5	3.0	5.0	5.0	5.0	5.0	
	2	SSH10.0x100	6	CNA*	2.2	2.3	2.9	3.5	5.0	5.0	5.0	5.0	
	2	SSH10.0x40 ⁽¹⁾	10	CNA*	1.07	1.13	1.44	1.77	5.0	5.0	5.0	5.0	
SLE320	2	SSH10.0x50 ⁽¹⁾	10	CNA*	1.4	1.5	1.9	2.3	5.0	5.0	5.0	5.0	
	2	SSH10.0x100	10	CNA*	1.6	1.7	2.2	2.7	5.0	5.0	5.0	5.0	
	4	SSH10.0x40 ⁽¹⁾	12	CNA*	2.01	2.07	2.44	2.84	10.0	10.0	10.0	10.0	
SLE380	4	SSH10.0x50 ⁽¹⁾	12	CNA*	2.6	2.7	3.2	3.7	10.0	10.0	10.0	10.0	
	4	SSH10.0x100	12	CNA*	3.0	3.1	3.7	4.3	10.0	10.0	10.0	10.0	
	4	SSH10.0x40 ⁽¹⁾	14	CNA*	1.63	1.69	1.99	2.33	10.0	10.0	10.0	10.0	
SLE440	4	SSH10.0x50 ⁽¹⁾	14	CNA*	2.1	2.2	2.6	3.0	10.0	10.0	10.0	10.0	
	4	SSH10.0x100	14	CNA*	2.5	2.6	3.0	3.5	10.0	10.0	10.0	10.0	
	4	SSH10.0x40 ⁽¹⁾	16	CNA*	1.63	1.67	1.91	2.17	10.0	10.0	10.0	10.0	
SLE500	4	SSH10.0x50 ⁽¹⁾	16	CNA*	2.1	2.2	2.5	2.8	10.0	10.0	10.0	10.0	
	4	SSH10.0x100	16	CNA*	2.5	2.5	2.9	3.3	10.0	10.0	10.0	10.0	

⁽¹⁾SSH can be replaced by SSF

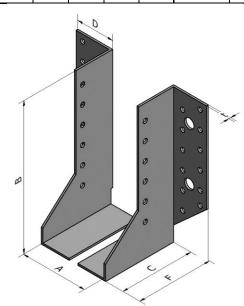
The user shall verify the transversal tension in timber which is not included in these capacities.

^{*}Refer to *Characteristic Capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

Characteristic capacities for SBG-SLE - with connector screw SSH/SSF with predrilling

			Produ	ct capac	cities - Ti	mber to 1	Timber - I	_arge coi	nnector s	crew			
		Fastener	s		Characteristic capacities - Timber C24								
Blank		Header		oist		R	1.k			R	2.k		
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60	
SLE230	2	SSH10.0x50 ⁽¹⁾	6	CNA*	7.8	8.5	9.0	9.2	7.8	8.3	8.9	9.1	
SLE230	2	SSH10.0x100	6	CNA*	7.8	8.6	10.5	11.3	7.8	8.7	10.5	11.1	
SI ESGO	2	SSH10.0x50 ⁽¹⁾	6	CNA*	7.8	8.5	9.0	9.2	7.8	8.6	9.1	9.2	
SLE260	2	SSH10.0x100	6	CNA*	7.8	8.6	10.5	11.3	7.8	8.7	10.5	11.4	
SLE320	2	SSH10.0x50 ⁽¹⁾	10	CNA*	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	
SLE320	2	SSH10.0x100	10	CNA*	12.8	13.3	13.6	13.6	12.6	13.2	13.6	13.6	
SLE380	4	SSH10.0x50 ⁽¹⁾	12	CNA*	15.6	16.3	16.6	16.6	15.7	16.4	16.6	16.6	
SLE360	4	SSH10.0x100	12	CNA*	15.7	17.3	21.1	22.3	15.7	17.3	21.1	22.6	
SLE440	4	SSH10.0x50 ⁽¹⁾	14	CNA*	16.6	16.6	16.6	16.6	16.6	16.6	16.6	16.6	
SLE440	4	SSH10.0x100	14	CNA*	18.3	20.2	23.5	23.9	18.3	20.2	23.5	23.9	
SLE500	4	SSH10.0x50 ⁽¹⁾	16	CNA*	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	
SLESUU	4	SSH10.0x100	16	CNA*	20.9	23.1	25.2	25.2	20.9	23.1	25.2	25.2	

		1	Produ	ct capac	cities - Ti	mber to 1	Γimber - I	_arge coi	nnector s	crew			
		Fastener	S		Characteristic capacities - Timber C24								
Blank	Header		J	oist		R:	3.k			R	4.k		
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60	
CI FOOD	2	SSH10.0x50 ⁽¹⁾	6	CNA*	2.5	2.9	3.6	4.2	5.0	5.0	5.0	5.0	
SLE230	2	SSH10.0x100	6	CNA*	2.5	2.9	4.2	5.3	5.0	5.0	5.0	5.0	
SLE260	2	SSH10.0x50 ⁽¹⁾	6	CNA*	1.9	2.0	2.5	3.0	5.0	5.0	5.0	5.0	
SLEZOU	2	SSH10.0x100	6	CNA*	2.5	2.9	3.6	4.4	5.0	5.0	5.0	5.0	
SLE320	2	SSH10.0x50 ⁽¹⁾	10	CNA*	1.4	1.5	1.9	2.3	5.0	5.0	5.0	5.0	
SLE320	2	SSH10.0x100	10	CNA*	2.0	2.1	2.7	3.3	5.0	5.0	5.0	5.0	
SLE380	4	SSH10.0x50 ⁽¹⁾	12	CNA*	2.6	2.7	3.2	3.7	10.0	10.0	10.0	10.0	
SLE360	4	SSH10.0x100	12	CNA*	3.7	3.9	4.6	5.4	10.0	10.0	10.0	10.0	
SLE440	4	SSH10.0x50 ⁽¹⁾	14	CNA*	2.1	2.2	2.6	3.0	10.0	10.0	10.0	10.0	
SLE440	4	SSH10.0x100	14	CNA*	3.1	3.2	3.8	4.4	10.0	10.0	10.0	10.0	
SLE500	4	SSH10.0x50 ⁽¹⁾	16	CNA*	2.1	2.2	2.5	2.8	10.0	10.0	10.0	10.0	
SLE500	4	SSH10.0x100	16	CNA*	3.1	3.2	3.6	4.1	10.0	10.0	10.0	10.0	


⁽¹⁾SSH can be replaced by SSF

D43 SDED/G and BNS2P Joist hanger

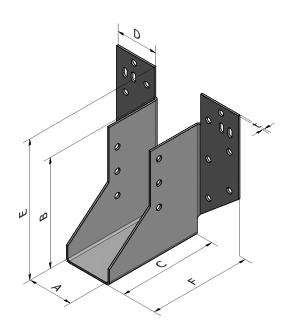
Product Name	Material reference acc. to clause II-1	Alternative Names
SDED/G	Steel ref 1 - Steel ref 2	-
BSN2P	Steel ref 1 - Steel ref 2	-

Dimensions

			Dimo	ncion	o Imm	.1				Н	oles			
	Blank		Dillie	nsion	s [IIIIII	ני		Header				Joist		
		Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size	
	300	60-250	118	84	41.5	86	2	2 x 9	Ø5	2 x 2	Ø13	2 x 5	Ø5	
ODED/O	340	60-250	138	84	41.5	86	2	2 x 11	Ø5	2 x 2	Ø13	2 x 6	Ø5	
SDED/G	380	60-250	158	84	41.5	86	2	2 x 11	Ø5	2 x 2	Ø13	2 x 6	Ø5	
	440	60-250	188	84	41.5	86	2	2 x 14	Ø5	2 x 2	Ø13	7 + 8	Ø5	
	BSN2P30/98	60-200	98	70.5	39.5	72.5	2	2 x 8	Ø5	2 x 2	Ø9	2 x 4	Ø5	
BSN2P	BSN2P30/152	60-250	152	78	42	80	2	2 x 12	Ø5	2 x 2	Ø11	2 x 12	Ø5	
	BSN2P30/180	60-250	180	85	44	87	2	2 x 13	Ø5	2 x 3	Ø11	2 x 7	Ø5	
	Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-	

Parameters have to be used with equation in Annex C.

 $k_{\text{H},1}$ and $k_{\text{H},2}$ – SDED/G BSN2P - Full Nailing


141,1 0.110. 141,2			
	Blank	Coe	fficients
	DIAIIK	Coeffi k _{H,1} 24 32.9 38.6 55.9 17.7 51.7 73.4	k _{H,2}
	300	24	19.9
SDED/C	340	32.9	28.1
SDED/G	380	38.6	28.1
	440	55.9	42.9
	BSN2P30/98	17.7	16.6
BSN2P	BSN2P30/152	51.7	32.8
	BSN2P30/180	73.4	37.6

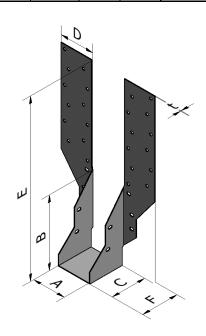
D44 SHT Strap hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SHT	Steel ref 1 - Steel ref 2	-

Dimensions

		Dimensions [mm]							Holes			
Reference									Header		Joist	
	Α	В	С	D	E	F	t	Qty	Size	Qty	Size	
SHT115/38	38	90	83.5	35.9	115	85	1.5	12	Ø5	6	Ø5	
Permitted deviation	-	-	-	-	-	-	-	-	-	-	-	

Characteristic Capacities for SHT - Timber to Timber - C24


		Faste	eners - CNA 4.0	x 35	Characteristic capacity		
Hanger Type	Installation Configuration	• •	ng Timber eners	Supported Timber		- C24	
		Тор	Face	Fasteners	R _{1,k}	R _{2,k}	
SHT115/38	Face Fix	-	12	6	9.60	6.69	
SHT115/38	Wrap Over	2	8	6	9.40	5.82	

D45 THA Straps hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
THA	Steel ref 1 - Steel ref 2	-

Dimensions

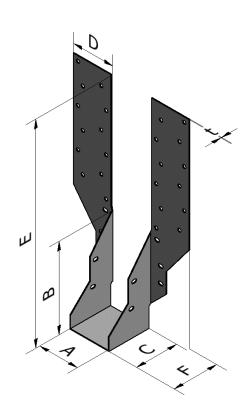
		_	limana	iono In	n ma 1					Holes	
Blank		L	imens	ions [n	nmj			Head	der		Joist
	Α	В	С	D	E	F	t	Qty	Size	Qty	Size
THA38	38	113.5	62.5	60.7	226	64.6	1.2	22	Ø4. 1	6	Dome Holes
THA44	44	110.5	62.5	60.7	223	64.6	1.2	22	Ø4. 1	6	Dome Holes
THA50	50	107.5	62.5	60.7	220	64.6	1.2	22	Ø4. 1	6	Dome Holes
THA75	75	120	62.5	60.7	232.5	64.6	1.2	22	Ø4. 1	6	Dome Holes
THA100	100	107.5	62.5	60.7	220	64.6	1.2	22	Ø4. 1	6	Dome Holes
Permitted deviation	-	-	±1.0	±1.0		±1.0	-	-	-	-	-

Parameters have to be used with equation in Annex C.

Parameters for THA - F1 - Timber to timber

Model	-	l _{ef}	s	B _{eff}	a-0.5a _c	е	C _{hor}	kef	d	n _{eff} (per flange) round wire		
THA38	59.5	109	40	93	114	34.5	10	0.35	1.2	7		
THA44	59.5	113	40	93	114	34.5	10	0.35	1.2	7		
THA50	59.5	115	40	93	114	34.5	10	0.35	1.2	7		
THA75	59.5	120	40	85	114	34.5	10	0.35	1.2	7		
THA100	59.5	120	40	77	114	34.5	10	0.35	1.2	7		

Page 227 of 229 of European Technical Assessment no. ETA-06/0270, issued on 2024-05-07


	Installation Configuration	Supporting Ti	mber Fasteners	Supported Timber Fasteners		
Hanger Type		3.75	x 30 ST	× 30	× 75	
		Тор	Face	ST 3.75	SS 3.75	
	Face Fix	-	20	4	-	
THA	Wrap Over	4	8	4	-	
I	Face Fix	-	20	-	4	
	Wrap Over	4	8	-	4	

D46 THAI Straps hanger

Product Name	Material reference acc. to clause II-1	Alternative Names			
THAI	Steel ref 1 - Steel ref 2	-			

Dimensions

			Dimon	oiono Ir	m.m.1			Holes						
Blank		Dimensions [mm]							Header				Joist	
	Α	В	С	D	E	F	t	Qty	Size	Qty	Size	Qty	Size	
THAI222	40	238	57	58.2	580	65	1.2	60	Ø4	-	-	6	Closed Pan	
THAI1.81/22	46	235	57	58.2	577	65	1.2	60	Ø4	-	-	6	Closed Pan	
THAI3522	59	228	57	58.2	570	65	1.2	60	Ø4	-	-	6	Closed Pan	
THAI322	65	225	57	58.2	568	65	1.2	60	Ø4	-	-	6	Closed Pan	
THAI422	90	220	57	58.2	555	65	1.2	60	Ø4	1	1	6	Closed Pan	
THAI-2	45 - 150	213	63.5	63.5	550	67	2	56	Ø4.34	ı	ı	2	Closed Pan	
THAI1200	38 - 150	(560-A)/2	63.5	63.5	(1200-A)/2	67	2	48	Ø5	8	Ø13	6	Ø5	
Permitted deviation	-	-	±1.0	±1.0	-	±1.0	-	-	-	ı	-	-	-	

Parameters have to be used with equation in Annex C.

Parameters for THAI - F1 - timber to timber

Model	I	l _{ef}	S	B _{eff}	a-0.5a _c	е	C _{hor}	kef	d	n _{eff} (per flange) round wire	n _{eff} (per flange) Ring Shank nails
THAI222	57	107	39	87	200	37	15	1	1.1	5	2.5
THAI1.81/22	57	110	39	87	200	37	15	1	1.1	5	2.5
THAI3522	57	117	39	84	200	37	15	1	1.1	5	2.5
THAI322	57	117	39	83	200	37	15	1	1.1	5	2.5
THAI422	57	117	39	76	200	37	15	1	1.1	5	2.5
THAI-2	63.5	124	49	85	200	37	15	1	1.1	5	2.5
THAI1200	63.5	124	49	109-0.32A	200	37	15	1	1.1	5	2.5

	Installation		Supporting Tir	Supported Timber Fasteners			
Hanger		SS	3.75x75	ARS 4	.0x50	×30	SS 3.8x38
Туре	Configuration	Тор	Face	Тор	Face	ST 3.75x30	
	Face Fix	-	20	-	-	2	-
TUAI*		-	-	-	20	-	2
THAI*	Wrap Over	4	2	-	•	2	-
		-	=	4	2	-	2

^{*}Except THAI1200

	Installation Configuration	\$	Supporting Tim	Supported Timber Fasteners				
Hanger		ARS 4.0x50*		SSH12	2.0x60			
Туре		Тор	Face	Тор	Face	ARS 4.0x50*		
	Face Fix	-	20	-	-	2		
THAI1200		1	ı	-	4	2		
	Wrap Over	4	2	-	-	2		

^{*} For width $A \le 50$ mm, ARS to be considered should be ARS 4.0x35

Parameters for THAI - F1 - timber to concrete

Model	ø	B_{eff}	Z _{max}	е	d
THAI1200	49	109-0.32A	(1200-A)/2 - 310	37	1.1